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Success in Al based diagnosis

Al Assisted Medicine

Company FDA Approval Indication

Apple September 2018  Atrial fibrillation detection

Aidoc August 2018 CT brain bleed diagnosis

iCAD August 2018 Breast density via
mammography

Zebra Medical July 2018 Coronary calcium scoring

Bay Labs June 2018 Echocardiogram EF
determination

Neural Analytics  May 2018 Device for paramedic stroke
diagnosis

IDx April 2018 Diabetic retinopathy diagnosis

Icometrix April 2018 MRI brain interpretation

Imagen March 2018 X-ray wrist fracture diagnosis

Viz.ai February 2018 CT stroke diagnosis

Arterys February 2018 Liver and lung cancer (MRI, CT)
diagnosis

MaxQ-Al January 2018 CT brain bleed diagnosis

Alivecor November 2017 Atrial fibrillation detection via
Apple Watch

Arterys January 2017 MRI heart interpretation

Al based drug discovery
and development



Al Accelerates Drug Discovery and Development

Merck Molecular Activity Challenge

-9 MERCK
w Help develop safe and effective medicines by predicting molecular activity.
Be well

. —
- DeepMind’s Al will accelerate drug discovery by
= O = predicting how proteins fold
@. T0954 /6CVZ T0965 / 6D2V T0955 / 5SW9OF

Structures:
Ground truth (green)
Predicted (blue)

https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html

De novo structure prediction with deep-learning based scoring R.Evans, et al. In Thirteenth Critical Assessment of
Techniques for Protein Structure Prediction (Abstracts) 1-4 December 2018.



https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html

Eroom’s Law in Pharmaceutical R&D

a Overall trend in R&D efficiency (inflation-adjusted)
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Scannel et al., Diagnosing the decline in pharmaceutical R&D efficiency, Nature Reviews Drug Discovery, 2012



Traditional Drug Discovery & Development Process

Clinical trials

Safety & effect concern |:>

in vitro in vivo

Anlmal model

Approved
for clinical use
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Drug
Discovery

Clinical Drug
Development

Pre-clinical
Drug Development

\

Drug discovery Pre-clinical Phase 1 Phase 2 Phase 3
Time spent 4-5 years 1-2 years 1-2 years 1-2 years 2-3 years
$ spent $550M $125M $225M $250M $250M
5,000 - 10,000 . 5-10 2-5 1-2
Output compounds 10-20 candidates candidates candidates candidates




Biomedical

data
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AlI/ML to the Rescue: Why and How?
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Big pharmas show significant interests in Al

Al-driven drug discovery is expected to grow to a
$2-4B market in 2024

$B
4 - Optimistic
3 . Middle
2 A Conservative
1
0

2018 2019 2020 2021 2022 2023 2024

Novartis: A2A pharmaceuticals, Biovista, Watson

Merck: Synthace, Cyclica, Atomwise, Numerate, lktos

Roche: Flatiron Health, Genialis, Exscentia, Owkin, Synapse, GNS
Sanofi: Researchably, Benevolent Al, Exscentia, Berg Health
GSK: Exscentia, Cloud Pharmaceruticals, Insilico Medicine

Biopharmatrend Report, Biopharmatrend Charts, GMInsights, Marketwatch,



https://www.biopharmatrend.com/post/72-2018-ai-is-surging-in-drug-discovery-market/
https://www.biopharmatrend.com/m/charts/
https://www.gminsights.com/industry-analysis/healthcare-artificial-intelligence-market
https://www.marketwatch.com/press-release/over-40-cagr-healthcare-artificial-intelligence-market-to-reach-10-billion-by-2024-2018-09-14

Many Al start-ups in drug discovery

Competitor Raised capital |Year funded | Employees Approach

) Drug discovery, clinical trial simulation, biomarker ID,
BenevolenTAI $202M ($2B val) 2013 51-100 mechanism of disease with knowledge graphs
- ) External control arms (EHR), analysis through linked EMR
” flatiron ($1.9B val) 2012 251-500 and genomic data
h ea l P4 $61.9M 2014 11-50  Drug repositioning with knowledge graphs
e o ) Drug discovery, clinical trial simulation, biomarker ID,
-+ GNS HEALTHCARE $54.3M 2000 101-250 mechanism of disease with knowledge graphs
‘ﬁ‘ Atomwise $51.3M 2012 11-50  Drug discovery with chemoinformatics and CNNs
- M ) Drug discovery from Al to experimental, using
EX§§NI§KQJ.LIEDGGE $43.7M 2012 11-50 chemoinformatics and phenotypic screening
> i Drug discovery, clinical development optimization through
£-J OWKIN $18.1M 2016 11:50 g ciseovery, o

$14.3M 2014 11-50 Drug discovery, clinical trial simulation with linked EHR
' and biomolecular data

twogiAR



Why drug discovery & development is interesting
to data mining community

Al
Source ro-TRepresentation &2 Challenges
Compound databases e Feature vectors * High-dimensional
Protein databases » Graphs « Small sample size

Lack of labels
Complex interaction

Disease knowledge Sequences
Biochemical literature e Text
Clinical trial data






Entities of Drug Discovery Modeling

Disease Molecule

Find a molecule effective

Identify a protein against the target

involved in the disease



Entities of Drug Discovery Modeling

Disease Molecule

Find a molecule effective
against the target

|dentify a protein
involved in the disease




Data Encoding: Molecule Compounds (1D)

Aspirin molecule.

Formally, acetylsalicylic acid

Weight, solubility, charge, number of
1-D descriptors rotatable bonds, atom types, topological
polar surface area



Data Encoding: Molecule Compounds (2D)

2D Graph
Representation

2-D Descriptor

O OH Aspirin molecule.

Circular fingerprinting

fingerprinting

taking into account the graph of covalent and
aromatic bonds, but not spatial coordinates.



Entities of Drug Discovery Modeling

Disease Molecule

Find a molecule effective
against the target

|dentify a protein
involved in the disease




Biology
3-D structure

H

H

Protein Targets

A Sequence of
23 Amino Acids

GO term
Protein Function
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Gene Sequence

Double Helix

DNA structure A-T, C-G aII.eIe
representation

ATGACGGATCAGCCGCAAGCGGAATTGGCGACATAACAAG
TACTGCCTAGTCGGCGTTCGCCTTAACCGCTGTATTGTTC




Entities of Drug Discovery Modeling

Molecule

Disease

Find a molecule effective

Identify a protein against the target

involved in the disease




Disease

Acute rheumatic fever codes
100. Rheumatic fever without mention of heart involvement
101.0 Acute rheumatic pericarditis
101.1 Acute rheumatic endocarditis
101.2 Acute rheumatic myocarditis
101.8 Other acute rheumatic heart disease
102.0 Rheumatic chorea with heart involvement

102.9 Rheumatic chorea without heart involvement



Biomedical Entities in the Knowledge Graph

Patient
demo

Side

effects

Outcomes Mutations
«_—

Cellular
component
Protein ’
Biological

process

Protein

interact

: Drug A
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—— o ——— =

: Hospitalization

: NME






Modeling Tasks Covered in This Talk

Target Disease

4. De Novo Design

Drug

0. Molecular
representation
learning

2. Drug repositioning

g
§ 3. Adverse drug
1. Molecule Property Reaction/interaction
Prediction




Input and Output of Modeling Tasks

0. Molecular
Representation
Learning

)=

Drug molecule embedding

1. Molecule Property f( %& ):

Prediction Drug molecule chemical property

Affinity

2. Drug repositioning f ( Qc& '$>) Score

Molecule + protein

3. Adverse drug f ( ot&ot&) — oO o
Reaction/interaction

Molecule + molecule interactions

4. De Novo Design 5
((ED) )= &3

chemical property Drug molecule



0.Molecular Representation Learning



Molecular Graph

A molecule compound is a distinct group
<L bond of atoms held together by chemical bonds.
N OH o
\ Molecules with similar descriptors have
similar properties.

HN N 0
__/ o

Molecular representation learning is a
F

fundamental task for in silico modeling.

atom

Molecular Graph



Molecular Graph Representation: Overview

1,
f(op70) = §a§ e—

Drug molecular Low dimensional ®
descriptors embeddings e

Intuition: Map raw drug molecular data to low
dimensional embeddings such that similar
molecules are embedded close together



Traditional Molecular Representation

by a characteristic vector of
numbers (descriptors),

<L bond 1. Need to represent a structure
N OH
\

HN N 5 2. Should include property-
__/ " relevant aspects

3. Atom arrangement in SPdCe€

F «<— atom



Traditional Molecular Representation (1D)

1-D Descriptor 1. Need to represent a Structure
by a characteristic vector of

experimental and calculated molecular numbers (descriptors),

properties that do not account for a 5 Should include property-

molecule’s bond structure: weight,
solubility, charge, number of rotatable
bonds, atom types, topological polar 3. Atom arrangement in SPACE€

surface area

relevant aspects



Traditional Molecular Representation (2D)

1. Need to represent a Structure

by a characteristic vector of

taking into account the graph of numbers (descriptors),
covalent and aromatic bonds, but not 2. Should include property-
spatial coordinates. relevant aspects

3. Atom arrangement in SPdCe€

2-D Descriptor



Example of 2-D Representation (Circular Fingerprints)

Circular fingerprints Extended Circular Fingerprint (ECFPXx)

1: Input: molecule, radius R, fingerprint
length S

. Initialize: fingerprint vector f < Og

. for each atom a in molecule do

ra < g(a) > lookup atom features

. forL=1to Rdo > for each layer
for each atom ain molecule do
ri...ry = neighbors(a)
V < [ra,rq,...,rN] D> concatenate
ra < hash(v) > hash function
; I < mod(ra, S) > convert to index
11: fi « 1 > Write 1 at index

12: Return: binary vector f

LRGN H W




Example of 2-D Representation (Circular Fingerprints)

OH

Extended Circular Fingerprint (ECFPXx) |

WO — P —i{)

|
0

1. Search the partial structures
around each atom recurrently

1 Identifiers:

" R -1266712900

o L0 g o -1216914295
N e =k —_ 78421366
-887929888

-276894788

Diameter 0:

/ Diameter 2:
) 0 ) } n . . . -744082560
&j:\7;; > g2 ,-‘\\7;:U . “7~~‘ R -798098402 NH
! \ o L o\ ———>  -690148606
N\ ’ ’ - - 1191819827
AN 1687725933

1844215264

L . 0 -252457408
?/’\\fﬁ . \\f7 © 0N o//\\?7 132019747 1
; f ( L ———»  -2036474688

K A v/ N\ o R 1979958858
' o—/ S . -1104704513

t 3. Convert to a binary vector
2. Assign an integer identifier using a hash function

to each partial structure



Knowledge Based Molecular Representation Learning (3D)

1. Need to represent a structure by
a characteristic vector of

3-D Descriptor numbers (descriptors), e.g., # N
Atoms; # Aromatic Rings.

2. Should include property-relevant
aspects, e.g., neighborhood-
Induced properties, and relative
arrangement of atoms.

3. Atom arrangement in space,

Further considers spatial coordinates.



Example of 3-D Representation (E3FP)
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Simplified Molecular-Input Line-Entry System (SMILES)

Construction: Traverse the molecular graph in a depth-first manner following the atom with the
smallest label at each branch point.

3-cyanoanisole () are used to branches

—0

\ / =N

—N COc (cl) cccclCH#N

SMILES

Numbers are used to
represent rings



Matrix Representation for Molecules (Bond Adjacency)

A molecular structure with n atoms may be represented
by an n x n matrix (H atoms are often omitted).

O N WOIN|-=

OO0 | 0|0 |-~ |O|=-
OO0 |O| =~ |O=1MN
O| =10 | =10 W
O|0O|lO|—~|OC|OC|H
N OO | =2 OO | O
OINIOQOIO| O | O | O®




Matrix Representation for Molecules (Topological Distance)

Distance matrix : encodes the distances between atoms.
Topological distance is defined as the number of bonds
between atoms on the shortest possible path.

112 (3|4 |5 |6
2 5 110111213 1(3 |4
Hé 3 \gH 2 111]/01(11(2 (2|3
E 2 3 (2 (11011 ]1]2
4 (312111012 |3

Cl
4 5131211120 |1
6 |4 (3 ]2 (|3 [1]0




Molecular Representation Learning using Deep Neural Networks

Br ~
s f

y
SMILES BrCc1c[nH]nc1 molecular
property
BrC ¢c 1 c¢c [ nH] nc 1 e.g.,
Br [1|oflofoflofol|ofo|ofo]ofo solubility,
c |[0f1/|0|0|O|O|OO0O|0O|0O||0O}|O toxicity
&
H [0|0|0|O0(0/|0|0|1]|0|O0fO|O0 S
V)
0/0|1]|0Of1(/0O(O0|0O|O0|O1]O0 ©
One-hot c @
encoding n [OfO(O(O(0|O110}0|1}0]0
1 |0}|0|[Of1(0/0|0|O0|fO|OO]|-1
[ |0 0|O|O|fO|1(0|0O|0O|O|O|O
] [0|OlO0O|0O|O|O|Of1(0/0]|0




Data Representation: deep neural networks

o Let's start with a simple Multi-layer Perceptron (MLP)

- Binary classification: toxicity

Output y y = o(w,"h) (generate an outcome 0.0~1.0)

L)

Hidden Layer h h = a(W,,"x) (transform x for an easier prediction)

L)

Input x X (a vector representation of the input sample)




Data Representation (deep neural networks)

« Learning the model parameters

- Backpropagation + Gradient descent
Loss(y,y) = —(ylogy + (1 —y) log(1 - ¥))
Output y

0
- L )
70, 0ss(y,y)

Hidden Layer h

L)

dLoss(y,y) 00,
20, a0,

Input x



Mol2Vec (JCIM 2018)

learning molecular representation
without labeled or with limited
number of samples

Sentence <-> molecules

words <-> substructure

Step 1: Generation of Mol2vec embeddings —

unsupervised pre-training

r

Step 2: Application of Mol2vec descriptors
as input in supervised ML
\

4l e
4

OH
Sentence extraction \

\_

5 0N

—q

f : ) OH
Sentence extraction \

\_ Corpus: 19.9 million compounds /

Word2vec
| N

[0.2,0.1, .
High dimensional vector representations of

Morgan substructures y

4

\ Data set: thousands of compounds ~ /

‘ Identifier lookup

‘ Extraction of vectors

| }

Sum(|0.2. 0.1 ) =10.7,08, ..]

Compound vectors

Target
-

Compound
property

prediction

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Mol2Vec (JCIM 2018)

847957139 2592785365 2245384272 172827515 2246699815

Oli \/H){ \)( \j \/OK
H2N v H2N H2N Hz2N H2N A
\/KO \\\0 ,. \o % ’
4278941385 864942730 1510328189 864662311 1533864325

Method: Generate word2vec embedding on ECFP integer identifiers (words). As
each identifier corresponds to a substructure, one molecule structure
corresponds to a SMILE string (“sentence”)

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Mol2Vec (JCIM 2018)

ESOL solubility data set25 : a regression task to predict agueous
solubility of 1144 compounds

Ames mutagenicity data set: a classification task to determine if is
mutagenic of 6471 compounds

Tox21: classification task about 12 targets which were associated with
human toxicity of 8192 compounds



Mol2Vec (JCIM 2018)

Table 1. Performance of Mol2vec and Other Models on Regression Predictions of the ESOL Data Set

ML features ML method RZ, MSE MAE ref
descriptors MLR 0.81 £+ 0.01 0.82 0.69 28
molecular graph CNN 0.82 - - 40
molecular graph CNN - - 0.52 + 0.07 41
molecular graph CNN 0.93 0.31 + 0.03 0.40 + 0.00 9
molecular graph RNN 0.92 + 0.01 0.35 0.43 42
Morgan FPs GBM 0.66 + 0.00 1.43 + 0.00 0.88 + 0.00 this work
Mol2vec GBM 0.86 + 0.00 0.62 + 0.00 0.60 + 0.00 this work

Table 2. Performance of Mol2vec and Other Methods on Classification Prediction of the Ames Data Set
ML features ML method AUC sensitivity specificity ref
descriptors SVM 0.86 + 0.01 - - 29
descriptors and Morgan FPs NBC 0.84 + 0.01 0.74 + 0.02 0.81 + 0.01 43
Morgan FPs RF 0.88 + 0.00 0.82 + 0.00 0.80 + 0.01 this work
Mol2vec RF 0.87 + 0.00 0.80 + 0.01 0.80 + 0.01 this work
Table 3. Performance of Mol2vec and Other Methods on Classification Predictions of the Tox21 Data Set
ML features ML method AUC sensitivity specificity ref
molecular graph CNN 0.71 + 0.13 - - 9
molecular descriptors and FPs SVM 0.71 + 0.13 - - S
molecular descriptors and FPs DNN 0.72 + 0.13 - - S
Morgan FPs RF 0.83 + 0.0 0.28 + 0.14 0.99 + 0.01 this work
Mol2vec RF 0.83 + 0.0 0.20 + 0.15 1.00 + 0.01 this work

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Data Representation (convolutional neural networks)

* Process data that has a known grid-like
structure (e.g., images, waveforms).

« Utilize a specialized linear operation —
convolution.

« Advantages: sparse interactions,
parameter sharing, and translational
iInvariance.




Neural Fingerprint (NIPS’ 15)

Contribution

) provide an end-to-end learning framework:

> to learn fingerprint with better predictive performance
» the inputs are graphs with arbitrary size and shape

J Efficient computation
»Fixed fingerprint must be large to encode all possible substructures

»Neural fingerprint can be learned to encode relevant features for classification-
> reduce the size

I Neural fingerprint 1s more interpretable-> meaningful

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Ci

rcular fingerprints

1:

. forL=1to Rdo

S 2SOXNOG BWN

Input:
length S

molecule, radius R, fingerprint

. Initialize: fingerprint vector f < Og
. for each atom a in molecule do

> lookup atom features

> for each layer
for each atom a in molecule do
ri...ry = neighbors(a)
V < [ra,rq,...,Fy] > concatenate
ra < hash(v) > hash function
I < mod(ra, S) > convert to index
fi 1 > Write 1 at index

. Return: binary vector f

ra < g(a)

Neural graph fingerprints

1. Input: molecule, radius R, weights
H] ... H2, output weights W ... Wg

2. Initialize: fingerprint vector f « Og
3: for each atom a in molecule do
4. rp<« g(a) b lookup atom features

5: forL=1to Rdo > for each layer
for each atom a in molecule do
ri...ry = neighbors(a)
Vra+ > N.r > Sum
ra + o(vHY) > smooth function
| + softmax(raW,) b sparsify
1: f< f+i »addto fingerprint
12: Return: real-valued vector f

S ©OEND

Every non-differentiable operation is replaced with a differentiable analog.

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Neural graph fingerprints

1: Input: molecule, radius R, weights
Hl ... H3, output weights W; ... Wg

Initialize: fingerprint vector f + 0g
for each atom a in molecule do r1
‘ra < g(a) v lookup atom features E—

2.

3:

4.

g: for L= 1to Rdo > for each layer o ' N —
7 o

8:

9:

for each atom a in molecule do \:l / "
r

ri...ry = neighbors(a) C —C
Vera+d N 1 > sum I

ra < o(VHN) > smooth function \\
10: i « softmax(raW,) b sparsify
j 1 s f«— f+i > addto fingerprint C
12: Return: real-valued vector f

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Neural graph fingerprints

1: Input: molecule, radius R, weights
Hl ... H3, output weights W; ... Wg

2: Initialize: fingerprint vector f + 0g @
3. for each atom ain molecule do 1 TR

4: ry« g(a) > lookup atom features — ‘.

S: forL=1to Rdo > for each layer o) ra | N S
6: for each atom ain molecule do P S— /

7/ ry ...ry = neighbors(a) C— 'N
O Vera+ SN > SUM
9: ra + o(vH}') > smooth function \\

10: i «— softmax(raW,) b sparsify

11: f«— f+i o addto fingerprint C

12: Return: real-valued vector f

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Neural graph fingerprints ——ra .

1: Input: molecule, radius R, weights \
Hl ... H3, output weights W; ... Wg v

2 Initialize: fingerprint vector f < 0g :

3. for each atom ain molecule do ' :

4: ra« g(a) v lookup atom features @

S:forL=1to Rdo  »foreach layer — L

6:  for each atom ain molecule do O rai < N —

7/ ry...ry = neighbors(a) ~ e

8: Va3 N, > SuUm C — ¢ r

9: ra + o(vH}') > smooth function

10: i «— softmax(raW,) b sparsify \\

11: f«< f+i b addto fingerprint C

12: Return: real-valued vector f

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

I | f
e
Neural graph fingerprints /®
| | |
1: Input: molecule, radius R, weights
Hl ... H3, output weights W; ... Wg
2 Initialize: fingerprint vector f < 0g C—ra
3: for each atom ain molecule do H
4: ry« g(a) > lookup atom features —
S5:forL=1to Rdo b for each layer ; |
6: for each atom ain molecule do 5
7 & ri{...ry = neighbors(a) @ K
8: VeTa+ D N r > sum ri 5
9. ra «— o(vHN) > smooth function o rn: <~ N___
10: | + softmax(raW,) b sparsify ~L— SN
11: f< f+i o add to fingerprint C—C —
12: Return: real-valued vector f \\
C

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Neural graph fingerprints

1: Input: molecule, radius R, weights
H] ... H2, output weights W; ... Wg

Initialize: fingerprint vector f + 0g

. for each atom a in molecule do

ra < g(a) o lookup atom features

1forL=1to Rdo > for each layer

for each atom a in molecule do _ ,
Iy ...ry = neighbors(a) This process is repeated many
Verat D N 3ol times to extract substructures
ra + o(vH") > smooth function with different levels

: | + softmax(raW,) b sparsify
1 f«< f+i o addto fingerprint

12: Return: real-valued vector f

OONNN MW

AA

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Experiment: predict solubility, drug efficacy, and organic photovoltaic efficiency

Dataset | Solubility Drug efficacy  Photovoltaic efficiency
Units | log Mol/L ECsp in nM percent
Predictmean | 429 +040 1.47 +0.07 6.40 + 0.09
Circular FPs + linear layer | 1.84 +0.08 1.13 + 0.03 2.62 + 0.07
Circular FPs + neuralnet | 1.40 +0.15 1.24 + 0.083 2.04 + 0.07
Neural FPs + linear layer | 0.74 +-0.09 1.16 £ 0.03 2.71 = 0.13
Neural FPs + neuralnet | 0.53 +=0.07 1.17 +0.03 1.44 £+ 0.11

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15




Summary of Molecular Representation

Neural network based
molecular representation
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Quantitative structure-activity relationship
(QSAR) modeling



QSAR: Quantitative structure—activity relationship

Molecule Property Prediction

Intrinsic Properties
Molar volume, molecular weight,
connectivity indices

Chemical Properties

s Molecule
f( Q& ) = @ property pKa, Log P, Solubility, Stability

Drug molecule

Biological Properties
Activity, Toxicity, Pharmacokinetics



Deep Neural Nets as a Method for
Quantitative Structure-Activity Relationships.

Ma, Junshui, Robert P. Sheridan, Andy Liaw, George E. Dahl, and Vladimir Svetnik.
2015. Journal of Chemical Information and Modeling 35 (2): 263—74



RO12

€% MERCK

Help develop safe and effective medicines by predicting molecular activity.
Be well
$40,000 - 236 teams - 7 years ago

Merck Molecular Activity Challenge

Overview Data Discussion Leaderboard Rules

Overview

Description Help enable the development of safe, effective medicines.

Prizes When developing new medicines it is important to identify molecules that are highly active toward their
intended targets but not toward other targets that might cause side effects. The objective of this

Evaluation

competition is to identify the best statistical techniques for predicting biological activities of different

Visualization- molecules, both on- and off-target, given numerical descriptors generated from their chemical structures

Prospect The challenge is based on 15 molecular activity data sets, each for a biologically relevant target. Each row
.. corresponds to a molecule and contains descriptors derived from that molecule's chemical structure.
Submission-
Instructions In addition to the prediction competition, Merck is also hosting a visualization challenge with a $2,000
. prize for the most insightful and elegant graphical representations of the data.
Winners

Prizes total $40,000.

Ma et al. 2015. “Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships.”
Journal of Chemical Information and Modeling 55 (2): 263—74.



Deep learning for Quantitative Structure-Activity Relationships (QSAR)

activity

T

N—"
|

y

Ma et al. 2015. “Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships.”
Journal of Chemical Information and Modeling 55 (2): 263—74.



number of number of unique AP,

data set type description molecules descriptors
Kaggle Data Sets
3A4 ADME  CYP P450 3A4 inhibition —log(IC50) M S0000 9491
D a ta S e tS a n d ta S kS CB1 target  binding to cannabinoid receptor 1 —log(ICS0) M 11640 5877
DPP4 target inhibition of dipeptidyl peptidase 4 —log(IC50) M 8327 5203
HIVINT target inhibition of HIV integrase in a cell based assay —log(IC50) M 2421 4306
HIVPROT target inhibition of HIV protease —log(IC50) M 4311 6274
LOGD ADME  logD measured by HPLC method 50000 8921
METAB ADME  percent remaining after 30 min microsomal incubation 2092 4595
kinin1 (substance P) receptor binding —log(IC50) M 13482 5803
1 1 receptor —log(K;) M 7135 4730
. 12 receptor —log(K;) M 14875 5790
1 5 tasks/datasets (Kaggle competition) ot iogea/an) s603 5135
tein binding log(bound/unbound) 11622 5470
ity) at 2 mg/kg 7821 5698
e \4 inhibitions log(IC50 without NADPH/ICS0 with
+ 19 additional datasets ks g3 e e e
. nhibition —log(IC50) M 6924 5552
Additional Data Sets
ADME  CYP P450 2CS8 inhibition —log(IC50) M 29958 8217
30) M 189670 11730
1 7 50) M 50000 9729
Largest dataset has molecules -sucsom 2763 s242
150) M 17469 6200
50000 8959
1 2 . (clearance) yL/min-mg 23292 6782
and 5 descriptors/features 0) M 12843 6596
M 9536 6136
FASSIF ADME  solubility in simulated gut conditions log(solubility) mol/L 89531 9541
HERG ADME inhibition of hERG channel —log(IC50) M 50000 9388
HER)G (full data ADME inhibition of hERG ion channel —log(IC50) M 318795 12508
set
NAV ADME inhibition of Navl.5 ion channel —log(IC50) M 50000 8302
PAPP ADME  apparent passive permeability in PK1 cells log(permeability) cm/s 30938 7713

PXR ADME  induction of 3A4 by pregnane X receptor; percentage relative to rifampicin 50000 9282



Methods

. Previous state of the art . Fully connected neural networks
. Random forest (RF) with 1 or 2 hidden layers




Results on Kaggle competition data

Improvement of DNN over RF
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Avg improvement in R? = .043
RF = .423
DNN = .496



Resu ItS on add |t|0na| data Table 3. Comparing RF with DNN Trained Using

Recommended Parameter Settings on 15 Additional Datasets

data set random forest (R*) individual DNN (R?)
2C8 0.158 0.255
2C9BIG 0.279 0.363
2D6 0.130 0.195
A-I1 0.805 0.812
BACE 0.629 0.644
CAV 0.399 0.463
CLINT 0.393 0.554
Avg improvement 13.9% ERK2 0.257 0.198
_ FACTORXIA 0.241 0.244
RF =.361 FASSIF 0.294 0271
DNN = 411 HERG 0.305 0.352
HERGfull 0.294 0.367
NAV 0.277 0.347
PAPP 0.621 0.678
PXR 0.333 0.416

mean 0.361 0.411



Automatic Generation of
Complementary Descriptors with
Molecular Graph Networks

J. Chem. Inf. Model. 2005, 45, 1159—1168 1159

Automatic Generation of Complementary Descriptors with Molecular Graph Networks

Christian Merkwirth*-7# and Thomas Lengauer*'

Computational Biology and Applied Algorithmics Group, Max-Planck-Institut fiir Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany, and Department for Information Technology,
Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Reymonta 4,

30-059 Krakéw, Poland

Received December 20, 2004



Motivation: How to automatically generate predictive chemical descriptors

. Chemical descriptors can quantify properties or characteristics of
molecules, but expensive feature engineering is required
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Figure source: hitp://www.scbdd.com/chemdes/
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Final output f
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Molecular graph network (MGN)

Supervisor | network

. Molecule structure —

p

atoms as nodes, bonds as edges
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. Feature net — Graph neural
network (1D node embedding)
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Result

« Data: 42 000 compounds from the Developmental Therapeutics Program AIDS
antiviral screen data set

- 41,179 compounds: confirmed inactive (Cl)
- 1080 compounds: confirmed moderately active (CM)

- 423 compounds: confirmed active (CA)
o Confusion matrix

predicted class

actual class CI CM CA
CI 0.835 0.126 0.038
CM 0.408 0.380 0212

CA 0.124 0.187 0.690



Convolutional Embedding of Attributed Molecular
Graphs for Physical Property Prediction

Connor W. Coley, Regina Barzilay, Willlam H. Green, Tommi S. Jaakkola,
and Klavs F. Jensen

JOURNAL OF

CHEMICAL INFORMATION July 2017
AND MODELING



Convolutional Embedding of Molecular Graphs

Task: Given the molecular graph, predict Octanol solubility, AQueous
solubility, Melting point.

Intuition: “Predictive models can assist in lead optimization and in
determining whether drug candidates should proceed to later

development stages.” To replace experimental High-Throughput
Screening (HTS) to virtual HTS.

Coley et al. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction



Convolutional Embedding of Molecular Graphs

4 )
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Undirected graphs with features on

Molecular Graphs as attribute graphs nodes and edges
Z # neighbors # hydrogens  Formal charge
Structure Node 1 | 6 1 3 0
H» Node2 |6 2 2 0
H3C/C\OH Node3 |8 1 1 0
Attributed Graph Order Aromatic Conjugated Inring Connects
Edge 1 | Single No No No (1, 2)
1 2 @6
@:@:@ Edge 2 | Single No No No (2, 3) S
>
)&\0
6,1,3,0,0,0,0,0,0 6,2,2,01,0,0,0,1 0,0,0,0,0,0,0,0,0 N
Methanol = 6' 1’ 3’ 00 10 0' 0! 0! 1 6: 2: 2: 0: 0: On 0; 0)0 8, 1, 1, O, 1, 0, 0, 0, 1 g M
0,000,0,0,0,0,0 622010001 81,1,0,0,0,0,0,0 :f:E

#atoms



Convolutional Embedding of Molecular Graphs

Table 3. 5-Fold CV Performance on the Abraham Octanol Solubility Dataset, Averaged over Three Runs”

Model

Best SVM baseline

GSE**

Abraham and Acree, no m.p.g’3
Abraham and Acree, m.p.33
CNN—Ab-oct-representatived
CNN-Ab-oct-representative
CNN-Ab-oct-consensus

Melting point

Required data

Four empirical descriptors

Four empirical descriptors and melting point

Number of samples

245°
223

282"
282"
245°
245°
245°

MSE
0.467 + 0.019

0.413 + 0.018
0.338 + 0.005
0.328 + 0.022

MAE
0.520 + 0.008

0.496 + 0.014
0.455 = 0.007
0.455 + 0.015

Table 4. 5-Fold CV Performance on the Delaney Aqueous Solubility Dataset, Averaged over Three Runs®

Model
Best SVM baseline

Lusci et al.'®

Duvenaud et al."’
CNN-De-aq-representative”
CNN-De-ag-representative
CNN-De-ag-consensus

Number of samples

11167
1144
1144
1116°
1116
1116°

MSE

1.255 + 0.011
0.34

0.334 + 0.011
0.312 + 0.003
0.314 + 0.008

MAE

0.821 + 0.006

0.43
0.52

SD

0.680 + 0.013
0.71
0.63
0.47
0.641 + 0.011
0.581 + 0.005
0.573 + 0.019

SD

1.117 + 0.004

0.424 + 0.005
0.401 + 0.002
0.403 + 0.005

0.577 £ 0.010
0.559 + 0.003
0.560 + 0.007
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Polyadic Regression and its Application
to Chemogenomics

loakeim Perros, Fei Wang, Ping Zhang, Peter Walker, Richard Vuduc,
Jyotishman Pathak, and Jimeng Sun
In Proceedings of the 2017 SIAM International Conference on Data
Mining (SDM 2017)
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Chemogenomics methodology:
Drug-induced, cell-specific gene expression analysis

(Gene 15 Tissue 13

Lab measurement y;, ;, ;, Indicates eflectiveness of
drug 21 towards treating tissue i3, w.r.t. gene 1.

Important for drug repositioning and revealing drug mechanisms

75



Challenges

1. Not all drugs are measured across all tissues

o EXxpensive or impossible to measure

2. Exploit external knowledge and estimate expression for new drugs, for which we have no measurements

o Focus on a small subset of targeted lab trials and cut down the costs

76



Problem: Polyadic Prediction
Predicted measurements are associated with ordered tuple of objects

R i L Tissue BARTATER
Drug % E_F_L :iﬂﬂ : TI_HE;{ -
: : Features &t EESEEE
Features p:i ; Fﬂ : ]ﬂ: - 3
:13@-1\

77



Polyadic Regression core model

fah e el

117 771927 1K
k=1 J
linear terms dyadlc interactions

— E Suvr X1 LB:ELU X9 LBZ) X3 w;—l—

uvor

triadic interactions

1 2 K
_|_S ><]_ mzl ><2m22"' XKw,LK

general polyadic interactions

1

2

><2w7:2...

K

o EXplores all inter-aspect interactions

o High model complexity

Drugs
Features BRSESRERsE-Sl.EatEs
Bl i

Genes

i :ﬁ Features

HHE M . 7
adiiit Tissue

1

fiBiF]

. vector-tensor analogue
of vector-matrix multiplication
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LINCS

PROGRAM

o LINCS L1000 publicly-available drug-gene-tissue data: ~1000 genes, known to

be maximally predictive

o 10 tissues with most expression profiles
o 850 genes for which we have similarity information (GOSemSim package in R)
o Drug features from PubChem: chemical structure of each drug

Drugs | Genes |Tissues| Density Values
Missing value| 81 850 10 100% 688,500
New drug 500 850 10 44%, 1,870,850

New drug experiment: constrain the train, validation and test sets to have no common drugs

79



Task 1: Estimating missing measurements

0.5
0.45 -

P
Q
w &
() BETAN

Spearman’s
&
DO

=
—_

=
o
T

—e— Polyadic Regression
—o-Factorization Machines
—5- Multi-view Machines

* Ridge Regression

0.5 1 1.5 2
#Parameters x10*

Linear terms: low predictive value
MVMs: joint factorization and
regularization (even if linear terms are
irrelevant)

FMs: competitive, but do not include 3-
order interactions

Polyadic Regression: highest accuracy

80



Task 2: Predicting measurements for new drugs

Method Spearman’s p #Parameters
Polyadic Regression 0.23025 == 0.0063886 4471
Factorization Machines 0.1252 == 0.0083942 4417
Multi-view Machines 0.0669 == 0.017242 4425
Ridge Regression 0.0061 1473

e Polyadic Regression achieves 0.1 increase in correlation between the predicted and the true vector of
measurements

e Robustness for different initialization of parameters



Summary: Polyadic Regression

/ Drug-pertu rbed,\ e
cell-specific o<,

s °‘<f‘i§"w B e e
, N ] | tﬂ Drug %ﬁﬁ j"ﬁl_l'* SeeiEeiicd x  Tissue iiﬁ.%i
) SRR - Features L
“z P Features i h’% Cones ;ﬂ i ‘ m§’3
Predicting interactions w
among multiple data aspects * 2 ;
S%Data Mining (SDM)jg 17
""""""""""""""""""""""" WYir i

1) Estimate effectiveness of drug on tissues w.r.t. available genes
2) Predict for drugs unseen during training

Perros et al 2017. “Polyadic Regression and Its Application to Chemogenomics.” SDM’17



Low Data Drug Discovery with
One-Shot Learning

Altae-Tran, Han, Bharath Ramsundar, Aneesh S. Pappu,
and Vijay Pande.
2017. ACS Central Science 3 (4). 283-93.



Motivation of one-shot learning for compound activity prediction

property target

. . . . Q)
3. & | [nvitroin vivo =
Wy (T4 = | x §y = X
HTS Pre-clinical g
Molecules Find promising
new candidates
Expensive, time-consuming Small historical

dataset

. How to find promising new drug candidates?
. How to find the candidates that are similar to the small number of active molecules?



One shot learning for compound activity prediction
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Great prediction results on two datasets with very limited training data

Table 1. ROC-AUC Scores of Models on Median Held-out Task for Each Model on Tox21“

Tox21

(T 10+/10-

5+/10—
1+/10—
1+/5—
1+/1—

RF (100 trees)

0.586 + 0.056
0.573 + 0.060
0.551 + 0.067
0.559 + 0.063
0.53S + 0.056

Graph Conv

0.648 + 0.029
0.637 + 0.061
0.541 + 0.093
0.59S5 + 0.086
0.589 + 0.068

Siamese

0.820 + 0.003
0.823 + 0.004
0.726 + 0.173
0.687 + 0.210
0.657 + 0.222

AttnL.STM

0.801 + 0.001
0.783 + 0.173
0.549 + 0.088
0.593 + 0.153
0.507 + 0.079

Table 2. ROC-AUC Scores of Models on Median Held-out Task for Each Model on SIDER”

RF (100 trees)

0.535 £ 0.036
0.533 £ 0.030
0.540 + 0.034
0.529 + 0.028
0.506 + 0.039

Graph Conv

0.483 + 0.026
0.473 £ 0.029
0.447 = 0.016
0.457 + 0.029
0.468 + 0.045

Siamese

0.687 + 0.089
0.648 + 0.070
0.544 + 0.056
0.530 £ 0.050
0.510 + 0.016

& 10 active molecules, 10 inactive molecules

SIAMESE network, AttentionLSTM, and IterRefLSTM perform great

AttnLSTM

0.553 £ 0.058
0.534 + 0.053
0.506 + 0.016
0.505 £ 0.022
0.501 + 0.022

IterRefLSTM

0.823 + 0.002
0.830 + 0.001
0.724 + 0.008
0.795 £ 0.005
0.827 + 0.001

IterRefLSTM

0.669 + 0.007
0.704 + 0.002
0.556 + 0.011
0.644 + 0.012
0.697 + 0.002



But inconsistent/poor performance on some dataset

Table 3. ROC-AUC Scores of Models on Median Held-out Task for Each Model on MUV*

MUV RF (100 trees) Graph Conv Siamese AttnLSTM IterRefLSTM
10+/10— 0.754 + 0.064 0.568 + 0.085 0.601 + 0.041 0.504 + 0.058 0.499 + 0.053
S5+/10— 0.730 + 0.063 0.565 + 0.068 0.655 + 0.166 0.507 + 0.052 0.663 + 0.019
1+/10— 0.556 + 0.084 0.569 + 0.061 0.602 + 0.118 0.504 + 0.044 0.569 + 0.012
1+/5— 0.598 + 0.067 0.554 + 0.089 0.514 + 0.083 0.515 + 0.021 0.632 + 0.011
1+/1— 0.559 + 0.095 0.552 + 0.084 0.500 + 0.0001 0.500 + 0.027 0.479 + 0.037

MUYV dataset select structurally distinct positive examples.

Poor performance on models leveraging structural similarity (SIAMESE,
AttnLSTM, IterRefLSTM)



And generalization across datasets is poor

Table 4. ROC-AUC Scores of Models Trained on Tox21 on
Median SIDER Task for Each Model on SIDER”

SIDER from Tox21 Siamese AttnLSTM IterRefLSTM
10+/10— 0.511 + 0.031 0.509 + 0.014 0.509 + 0.012

 Even on the datasets which can be trained toward accurate models on
themselves, those models do NOT generalize across datasets



Summary: QSAR: Quantitative structure—activity relationship

f( s )

53 Molecule
= @ property

Drug molecule

Deep neural networks
Graph neural networks
one-shot learning

Intrinsic Properties
Molar volume, molecular weight,
connectivity indices

Chemical Properties
pKa, Log P, Solubility, Stability

Biological Properties
Activity, Toxicity, Pharmacokinetics







