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AI Assisted Medicine

Success in AI based diagnosis

AI based drug discovery 
and development



AI Accelerates Drug Discovery and Development

https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
De novo structure prediction with deep-learning based scoring R.Evans, et al. In Thirteenth Critical Assessment of 
Techniques  for Protein Structure Prediction (Abstracts) 1-4 December 2018.

https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html


Eroom’s Law in Pharmaceutical R&D

Scannel et al., Diagnosing the decline in pharmaceutical R&D efficiency, Nature Reviews Drug Discovery, 2012

1) Hard to improve over 
existing drugs

2) cautious regulator
3) ”throw money at it” 

tendency
4) basic science-brute force

Causes of the Decline



Traditional Drug Discovery & Development Process

Drug discovery Pre-clinical Phase 1 Phase 2 Phase 3

Time spent 4-5 years 1-2 years 1-2 years 1-2 years 2-3 years

$ spent $550M $125M $225M $250M $250M

Output 5,000 - 10,000 
compounds 10-20 candidates 5-10 

candidates
2-5 

candidates
1-2 

candidates

in vitro in vivo Clinical trials Approved
for clinical use

Pre-clinical 
Drug Development

Drug 
Discovery

Clinical Drug 
Development

Animal model Safety & effect concern



AI/ML to the Rescue: Why and How?

Biomedical
data

Patient
data

in vitro in vivo Clinical trials Approved
for clinical use

Pre-clinical 
Drug Development

Drug 
Discovery

Clinical Drug 
Development

Animal model Safety & 
effectiveness

AI algorithms



Big pharmas show significant interests in AI

Novartis: A2A pharmaceuticals, Biovista, Watson
Merck: Synthace, Cyclica, Atomwise, Numerate, Iktos
Roche: Flatiron Health, Genialis, Exscentia, Owkin, Synapse, GNS 
Sanofi: Researchably, Benevolent AI, Exscentia, Berg Health
GSK: Exscentia, Cloud Pharmaceruticals, Insilico Medicine

Biopharmatrend Report, Biopharmatrend Charts, GMInsights, Marketwatch, 

AI-driven drug discovery is expected to grow to a 
$2-4B market in 2024

2018 2019 2020 2021 2022 2023 2024
0

2

1

3

4 Optimistic
$B

Conservative

Middle

https://www.biopharmatrend.com/post/72-2018-ai-is-surging-in-drug-discovery-market/
https://www.biopharmatrend.com/m/charts/
https://www.gminsights.com/industry-analysis/healthcare-artificial-intelligence-market
https://www.marketwatch.com/press-release/over-40-cagr-healthcare-artificial-intelligence-market-to-reach-10-billion-by-2024-2018-09-14


Many AI start-ups in drug discovery 

Competitor Raised capital Year funded Employees Approach

$202M ($2B val) 2013 51-100
Drug discovery, clinical trial simulation, biomarker ID, 
mechanism of disease with knowledge graphs

($1.9B val) 2012 251-500
External control arms (EHR), analysis through linked EMR 

and genomic data

$61.9M 2014 11-50 Drug repositioning with knowledge graphs

$54.3M 2000 101-250
Drug discovery, clinical trial simulation, biomarker ID, 
mechanism of disease with knowledge graphs

$51.3M 2012 11-50 Drug discovery with chemoinformatics and CNNs

$43.7M 2012 11-50
Drug discovery from AI to experimental, using 
chemoinformatics and phenotypic screening

$18.1M 2016 11-50
Drug discovery, clinical development optimization through 
knowledge graphs

$14.3M 2014 11-50
Drug discovery, clinical trial simulation with linked EHR 

and biomolecular data



Why drug discovery & development is interesting
to data mining community

Source Representation Challenges

• Compound databases
• Protein databases
• Disease knowledge
• Biochemical literature
• Clinical trial data

• Feature vectors
• Graphs
• Sequences
• Text

• High-dimensional
• Small sample size
• Lack of labels
• Complex interaction
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Entities of Drug Discovery Modeling

Disease Target Molecule

Identify a protein 
involved in the disease

Find a molecule effective 
against the target
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Find a molecule effective 
against the target



Data Encoding: Molecule Compounds (1D)

Weight, solubility, charge, number of 
rotatable bonds, atom types, topological 
polar surface area

1-D descriptors

bond

atom
Aspirin molecule.

Formally, acetylsalicylic acid



Data Encoding: Molecule Compounds (2D)

2D Graph 
Representation

taking into account the graph of covalent and
aromatic bonds, but not spatial coordinates.

atom

bond

2-D Descriptor
fin

ge
rp

rin
tin

g

Circular fingerprinting

Aspirin molecule.



Entities of Drug Discovery Modeling

Disease Target Molecule

Identify a protein 
involved in the disease

Find a molecule effective 
against the target



Protein Targets

Biology
3-D structure

A Sequence of 
23 Amino Acids

GO term
Protein Function



Gene Sequence

Double Helix
DNA structure A-T, C-G allele

representation



Entities of Drug Discovery Modeling

Disease Target Molecule

Identify a protein 
involved in the disease

Find a molecule effective 
against the target



Disease



Biomedical Entities in the Knowledge Graph

Protein

Drug

Side 
effects

Patient 
demo

Drug 
interact

ATC

Disease

Symptoms

Gene

Pathway

Cellular 
component

Mutations

Biological 
process

Protein 
interact

Outcomes

SAE

Drug

Drug

: Hospitalization

: NME

: Drug A

ATC

Protein : Target X
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Modeling Tasks Covered in This Talk

DiseaseTarget

Drug

2. Drug repositioning

3. Adverse drug 
Reaction/interaction

4. De Novo Design

1. Molecule Property
Prediction

0. Molecular 
representation 

learning



Input and Output of Modeling Tasks

chemical property

f (          ) =
Drug molecule

chemical property

f (          ) =
Drug molecule

Molecule + protein

f (             ) = Affinity 
Score

Molecule + molecule

f (             ) =
interactions

2. Drug repositioning

3. Adverse drug 
Reaction/interaction

4. De Novo Design

1. Molecule Property
Prediction

embedding

f (          ) =
Drug molecule

0. Molecular 
Representation 

Learning



0.Molecular Representation Learning



Molecular Graph

atom

bond

Molecular Graph

A molecule compound is a distinct group 
of atoms held together by chemical bonds.

Molecules with similar descriptors have 
similar properties.

Molecular representation learning is a 
fundamental task for in silico modeling.



Molecular Graph Representation: Overview

Drug molecular 
descriptors

Low dimensional
embeddings

f (          ) =

Intuition: Map raw drug molecular data to low 
dimensional embeddings such that similar 
molecules are embedded close together



Traditional Molecular Representation

1. Need to represent a structure
by a characteristic vector of 
numbers (descriptors), 

2. Should include property-
relevant aspects

3. Atom arrangement in spaceatom

bond



Traditional Molecular Representation (1D)

experimental and calculated molecular 
properties that do not account for a 
molecule’s bond structure: weight, 
solubility, charge, number of rotatable 
bonds, atom types, topological polar 
surface area

1-D Descriptor 1. Need to represent a structure
by a characteristic vector of 
numbers (descriptors), 

2. Should include property-
relevant aspects

3. Atom arrangement in space



Traditional Molecular Representation (2D)

taking into account the graph of 
covalent and aromatic bonds, but not 
spatial coordinates.

2-D Descriptor 1. Need to represent a structure
by a characteristic vector of 
numbers (descriptors), 

2. Should include property-
relevant aspects

3. Atom arrangement in space



Example of 2-D Representation (Circular Fingerprints)

Extended Circular Fingerprint (ECFPx)

r
r

r r



Example of 2-D Representation (Circular Fingerprints)

Extended Circular Fingerprint (ECFPx)

1. Search the partial structures 
around each atom recurrently

2. Assign an integer identifier 
to each partial structure

3. Convert to a binary vector 
using a hash function



Knowledge Based Molecular Representation Learning (3D)

Further considers spatial coordinates.

3-D Descriptor

1. Need to represent a structure by 
a characteristic vector of 
numbers (descriptors), e.g., # N 
Atoms; # Aromatic Rings.

2. Should include property-relevant 
aspects, e.g., neighborhood-
induced properties, and relative 
arrangement of atoms.

3. Atom arrangement in space, 



Example of 3-D Representation (E3FP)

Extended Three-Dimensional Fingerprint (E3FP)



Simplified Molecular-Input Line-Entry System (SMILES)

Numbers are used to 
represent rings

Construction: Traverse the molecular graph in a depth-first manner following the atom with the 
smallest label at each branch point.

3-cyanoanisole

COc(c1)cccc1C#N

SMILES

() are used to branches



Matrix Representation for Molecules (Bond Adjacency)

A molecular structure with n atoms may be represented 
by an n × n matrix (H atoms are often omitted). 



Matrix Representation for Molecules (Topological Distance)

Distance matrix : encodes the distances between atoms. 
Topological distance is defined as the number of bonds 
between atoms on the shortest possible path.



Molecular Representation Learning using Deep Neural Networks

f
!

molecular 
property

e.g., 
solubility, 
toxicity

ve
ct

or
ize



Data Representation: deep neural networks

● Let’s start with a simple Multi-layer Perceptron (MLP)

○ Binary classification: toxicity

Input x

Hidden Layer h

Output !"

h = #(Wh
Tx) (transform x for an easier prediction)

!" = #(wo
Th) (generate an outcome 0.0~1.0)

x (a vector representation of the input sample)



Data Representation (deep neural networks)

● Learning the model parameters

○ Backpropagation + Gradient descent

!
!"#

$%&&((, *()

$%&& (, *( = −(( log *( + 1 − ( log 1 − *( )

!$%&&((, *()
!"#

!"#
!"3

Input x

Hidden Layer h

Output *(



Mol2Vec (JCIM 2018)

learning molecular representation 
without labeled or with limited 
number of samples

Sentence <-> molecules

words <-> substructure

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Mol2Vec (JCIM 2018)

Method: Generate word2vec embedding on ECFP integer identifiers (words). As 
each identifier corresponds to a substructure, one molecule structure 
corresponds to a SMILE string (“sentence”)

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Mol2Vec (JCIM 2018)

ESOL solubility data set25 : a regression task to predict aqueous 
solubility of 1144 compounds

Ames mutagenicity data set: a classification task to determine if is 
mutagenic of 6471 compounds 

Tox21: classification task about 12 targets which were associated with 
human toxicity of 8192 compounds 

Kinase data from ChEMBL: 18 Bioactivities for 284 kinases (list see Supporting 9 Information) 



Mol2Vec (JCIM 2018)

Jaeger et al., Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 2018



Data Representation (convolutional neural networks)

!" !# !$ !% !&

ℎ" ℎ#
("(#

($ ("(#
($

Convolution

Pooling • Process data that has a known grid-like 
structure (e.g., images, waveforms).

• Utilize a specialized linear operation –
convolution.

• Advantages: sparse interactions, 
parameter sharing, and translational 
invariance.



Neural Fingerprint (NIPS’ 15)

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15

Every non-differentiable operation is replaced with a differentiable analog.



Neural Fingerprint (NIPS’ 15)
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Neural Fingerprint (NIPS’ 15)

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Neural Fingerprint (NIPS’ 15)

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15

This process is repeated many 
times to extract substructures 
with different levels 



Neural Fingerprint (NIPS’ 15)

Experiment: predict solubility, drug efficacy, and organic photovoltaic efficiency

Duvenaud DK, Maclaurin D, Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints, NIPS’ 15



Summary of Molecular Representation

Traditional Molecular 
Representation
• 1D: properties
• 2D: Circular fingerprints – e.g. ECFP

Neural network based 
molecular representation
• Mol2Vec
• Neural Fingerprint



Quantitative structure-activity relationship 
(QSAR) modeling 



QSAR: Quantitative structure–activity relationship

Molecule 
propertyf (          ) =

Drug molecule

Molecule Property Prediction

Intrinsic Properties
Molar volume, molecular weight, 
connectivity indices

Chemical Properties
pKa, Log P, Solubility, Stability

Biological Properties
Activity, Toxicity, Pharmacokinetics



Deep Neural Nets as a Method for 
Quantitative Structure-Activity Relationships.
Ma, Junshui, Robert P. Sheridan, Andy Liaw, George E. Dahl, and Vladimir Svetnik. 

2015. Journal of Chemical Information and Modeling 55 (2): 263–74



2012

Ma et al. 2015. “Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships.” 
Journal of Chemical Information and Modeling 55 (2): 263–74.



Deep learning for Quantitative Structure-Activity Relationships (QSAR)

X = molecular 
descriptors 
(features)

y
=

 a
ct

iv
ity

f(             )=

Ma et al. 2015. “Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships.” 
Journal of Chemical Information and Modeling 55 (2): 263–74.



Datasets and tasks

15 tasks/datasets (Kaggle competition)

+ 15 additional datasets

Largest dataset has 318,795 molecules 

and 12,508 descriptors/features



Methods

● Fully connected neural networks 
with 1 or 2 hidden layers

● Previous state of the art

○ Random forest (RF)



Results on Kaggle competition data 

Avg improvement in R2 = .043
RF = .423

DNN = .496



Results on additional data 

Avg improvement 13.9%
RF = .361

DNN = .411



Automatic Generation of 
Complementary Descriptors with 

Molecular Graph Networks 



Motivation: How to automatically generate predictive chemical descriptors

● Chemical descriptors can quantify properties or characteristics of 
molecules, but expensive feature engineering is required

Figure source: http://www.scbdd.com/chemdes/

http://www.scbdd.com/chemdes/


Molecular graph network (MGN) 

● Molecule structure –
atoms as nodes, bonds as edges

● Feature net – Graph neural 
network (1D node embedding)

● Supervisor network – Fully 
connected feed forward neural net



Result

● Data: 42 000 compounds from the Developmental Therapeutics Program AIDS 
antiviral screen data set 

○ 41,179 compounds: confirmed inactive (CI)

○ 1080 compounds: confirmed moderately active (CM)

○ 423 compounds: confirmed active (CA)
● Confusion matrix



Convolutional Embedding of Attributed Molecular 
Graphs for Physical Property Prediction 

Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, 
and Klavs F. Jensen

July 2017



Convolutional Embedding of Molecular Graphs

Task: Given the molecular graph, predict Octanol solubility, Aqueous 
solubility, Melting point. 

Intuition: “Predictive models can assist in lead optimization and in 
determining whether drug candidates should proceed to later 
development stages.” To replace experimental High-Throughput 
Screening (HTS) to virtual HTS. 

Coley et al. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction 



Convolutional Embedding of Molecular Graphs



Molecular Graphs as attribute graphs
Undirected graphs with features on 

nodes and edges

M

#atoms

#a
to

m
s

#fe
atu

res



Convolutional Embedding of Molecular Graphs



Polyadic Regression and its Application 
to Chemogenomics

Ioakeim Perros, Fei Wang, Ping Zhang, Peter Walker, Richard Vuduc, 
Jyotishman Pathak, and Jimeng Sun 

In Proceedings of the 2017 SIAM International Conference on Data 
Mining (SDM 2017)

?



Chemogenomics methodology:
Drug-induced, cell-specific gene expression analysis

Drug i1 Gene i2 Tissue i3

Lab measurement yi1,i2,i3 indicates e↵ectiveness of

drug i1 towards treating tissue i3, w.r.t. gene i2.

75

Important for drug repositioning and revealing drug mechanisms



Challenges

1. Not all drugs are measured across all tissues

○ Expensive or impossible to measure

2. Exploit external knowledge and estimate expression for new drugs, for which we have no measurements

○ Focus on a small subset of targeted lab trials and cut down the costs

76



Problem: Polyadic Prediction
Predicted measurements are associated with ordered tuple of objects

77

Drugs

Drug
Features

Tissues

x

1
i1

x

2
i2

x

3
i3

yi1,i2,i3

Genes

Genes

Tissue
Features



Polyadic Regression core model

● Explores all inter-aspect interactions 

● High model complexity 

78
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of vector-matrix multiplication
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Real data description

79

● LINCS L1000 publicly-available drug-gene-tissue data: ~1000 genes, known to 
be maximally predictive

● 10 tissues with most expression profiles
● 850 genes for which we have similarity information (GOSemSim package in R)
● Drug features from PubChem: chemical structure of each drug

Drugs Genes Tissues Density Values
Missing value 81 850 10 100% 688,500

New drug 500 850 10 44% 1,870,850

New drug experiment: constrain the train, validation and test sets to have no common drugs 



Task 1: Estimating missing measurements

80
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Polyadic Regression

Factorization Machines

Multi-view Machines

Ridge Regression

● Linear terms: low predictive value
● MVMs: joint factorization and 

regularization (even if linear terms are 
irrelevant)

● FMs: competitive, but do not include 3-
order interactions

● Polyadic Regression: highest accuracy



Task 2: Predicting measurements for new drugs

81

Method Spearman’s ⇢ #Parameters

Polyadic Regression 0.23025 ± 0.0063886 4471

Factorization Machines 0.1252 ± 0.0083942 4417

Multi-view Machines 0.0669 ± 0.017242 4425

Ridge Regression 0.0061 1473

● Polyadic Regression achieves 0.1 increase in correlation between the predicted and the true vector of 
measurements

● Robustness for different initialization of parameters



Summary: Polyadic Regression

Drug-perturbed, 
cell-specific

gene expression 
prediction 

Predicting interactions
among multiple data aspects
SIAM Data Mining (SDM) 2017

?

82

Drugs

Drug
Features
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1
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Genes

Genes

Tissue
Features

1) Estimate effectiveness of drug on tissues w.r.t. available genes
2) Predict for drugs unseen during training 

Perros et al 2017.  “Polyadic Regression and Its Application to Chemogenomics.”  SDM’17



Low Data Drug Discovery with 
One-Shot Learning

Altae-Tran, Han, Bharath Ramsundar, Aneesh S. Pappu, 
and Vijay Pande. 

2017. ACS Central Science 3 (4): 283–93.



Motivation of one-shot learning for compound activity prediction

● How to find promising new drug candidates?
● How to find the candidates that are similar to the small number of active molecules?

Molecules

in vitro in vivo

Pre-clinicalHTS

y

m
ol

ec
ul

e

target

X

property

Expensive, time-consuming Small historical 
dataset

Find promising
new candidates



One shot learning for compound activity prediction

Support Set                 

Query

Initial embedding 
via GCN

Refinement via 
Iterative LSTM

Attention model



Great prediction results on two datasets with very limited training data

10 active molecules, 10 inactive molecules
SIAMESE network, AttentionLSTM, and IterRefLSTM perform great



But inconsistent/poor performance on some dataset

• MUV dataset select structurally distinct positive examples. 
• Poor performance on models leveraging structural similarity (SIAMESE, 

AttnLSTM, IterRefLSTM) 



And generalization across datasets is poor

• Even on the datasets which can be trained toward accurate models on 
themselves, those models do NOT generalize across datasets



Summary: QSAR: Quantitative structure–activity relationship

Molecule 
propertyf (          ) =

Drug molecule

Intrinsic Properties
Molar volume, molecular weight, 
connectivity indices
Chemical Properties
pKa, Log P, Solubility, Stability

Biological Properties
Activity, Toxicity, Pharmacokinetics

• Deep neural networks
• Graph neural networks
• one-shot learning
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