
4. De Novo Design of Drug Molecules



De novo design as the inverse task of molecule property prediction 

QSAR: given 
the molecular 
descriptors, 
predict the 
chemical 
property. 

f (    )=De novo: 
want a 
molecule with 
certain 
property. 

f (    )=



Why Need De Novo Design

Design new therapeutic molecules 

Generate molecules with high potency 

Modify molecules to increase potency



Challenges of Traditional De Novo Methods

parent molecule

five mutation operators

new molecule

Combinatorial optimization, 
thus intractable

Large output space and big 
validation cost

Five mutation operators, i.e., add, cut, replace 
random, replace like, and new random, is used 
to produce a new molecule from the selected 
parent molecule.

The range of potential drug-like molecules 
is estimated to be between 10#$ and 10%&.



Generative Models for De Novo Design

parent 
molecule

new 
molecule

Generative Models

Variational Autoencoders

CVAE (2016)
Grammar VAE (ICML 2017)
JT-VAE (ICML 2018)
Constrained VAE (NIPS 2018)
GCPN (NIPS 2018)

q learn the probability distribution of molecule structures (e.g., characters in a SMILES 
string) and then generate new structures (e.g., strings) which correspond to 
chemically meaningful molecule compound.



Autoencoders for De Novo vs. Classifiers for QSAR

Input x

Latent
Layer h

Output !"

Classifier Autoencoders

Input raw molecule data 
or descriptors, Output 
drug properties

Reconstruct input molecule data 
by squeezing the data through a 
latent layer 
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Autoencoders

Input x

Latent z

Output !"’

Latent z

Encoder

Decoder

The # of hidden layers in encoder and 
decoder control the nonlinearity allowed

Subspaces whose dimensions 
correspond to meaningful concepts 
where most data lies



Variational Autoencoders: Encoder

!"($|&)

• The encoder learn an efficient 
compression of the data into this 
lower-dimensional space.

• It outputs parameters to !" $ & , a 
Gaussian probability density.

Diederik P Kingma; Welling, Max (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114
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Variational Autoencoders: Decoder

!"($|&)

• The decoder learn learned to 
reconstruct the input data given its 
latent representation.

• It achieves this via sampling from 
the output distribution of the 
encoder to get noisy values of the 
representations.
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Variational Autoencoders: Training

Input x

Latent z

Output !"’

Latent z

Encoder

Decoder
#$(&|() *+((|&)

q The reconstruction error of the decoder is 
reduced by maximizing the log-likelihood of 
*+ ( &

q Simultaneously, the encoder is regularized to 
approximate the latent variable distribution *+ &
by minimizing the Kullback-Leibler divergence 

,-(#$ & ( , *+ & )

q If the prior follow a multivariate Gaussian 
distribution with zero mean and unit 
variance, then the loss function is

- /, 0
= −345 & ( log(*+ ( & ) + ,-(#$ & ( , *+ & )

*+ & : prior distribution of 
the latent representation



Challenges of Molecule Generation

Generate molecules 
o with desired property
o syntactically correct molecules
o semantically correct
o High molecular property scores
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De Novo Design with VAE (CVAE, ACS Central Science 2018) 

Gomez-Bombarelli et al.,Automatic chemical design using a data-driven continuous representation of molecules, ACS Central 
Science 2018

Train Gaussian Process (GP) to maximize property scores. 
A new point was then selected by sequentially maximizing 
the expected improvement acquisition based on GP model.



De Novo Design with VAE (CVAE, ACS Central Science 2018) 

Gomez-Bombarelli et al.,Automatic chemical design using a data-driven continuous representation of molecules, ACS Central 
Science 2018

ZINC: 250,000 
drug-like 
commercially 
available 
molecules

QM9: 108,000 
molecules with 
fewer than 9 
heavy atoms

% generated molecules found in e-molecule database 



De Novo Design with VAE (CVAE, ACS Central Science 2018) 

Gomez-Bombarelli et al.,Automatic chemical design using a data-driven continuous representation of molecules, ACS Central 
Science 2018

The property scores improve during the optimization



Challenges of Molecule Generation

Generate molecules 
ü with desired property
ü syntactically correct molecules
o semantically correct
o High molecular property scores



Grammar Variational Autoencoder
Matt J. Kusner, Brooks Paige, José Miguel 

Hernández-Lobato
ICML’ 17



Grammar VAE (ICML’ 17)

Goal: Learning syntactic rules to produce valid outputs

Challenge: Molecule is constructed using a “formal 
language”, any syntax change will cause error

Opportunity: Syntax is known and fixed. Parse is 
unique.



Grammar VAE (ICML’ 17)

SMILES grammar 
to parse SMILES 
string into a parse 
tree

Learning syntactic rules to produce valid outputs

Decompose tree 
into a sequence of 
production rules by 
pre-order traversal 
on the branches

Convert 
rules into 
1-hot 
vector 

Input SMILES 
string and 
grammar

Map into a 
continuous 
vector using 
CNN

Kusner et al., Grammar Variational Autoencoder, ICML' 17



Grammar VAE (ICML’ 17)

SMILES grammar to parse SMILES string into a parse tree



Grammar VAE (ICML’ 17)

Extract production rules by pre-order traversal on the branches.



Grammar VAE (ICML’ 17)

Convert rules into 1-hot vector 



Grammar VAE (ICML’ 17)

Map into a continuous vector using CNN



Grammar VAE (ICML’ 17)

Kusner et al., Grammar Variational Autoencoder, ICML' 17

Decode continuous vectors back to SMILES strings

Pass the continuous vector 
using RNN to produce 
vectors or logits

A “pushdown automation” 
algorithm to select valid 
rules and construct SMILES



Grammar VAE (ICML’ 17)

Kusner et al., Grammar Variational Autoencoder, ICML' 17



Grammar VAE (ICML’ 17)

% of valid Avg. Score
CVAE 0.17 (0.05) -54.66 (2.66)
GVAE 0.31 (0.07) -9.57 (1.77)

Goal: maximize the water-octanol 
partition coefficient (logP), an important 
metric in drug design that 
characterizes the drug-likeness of a 
molecule.

GVAE produces a coherent 
latent space of molecules.



Challenges of Molecule Generation

Generate molecules 
ü with desired property
ü syntactically correct molecules
ü semantically correct
o High molecular property scores



Junction Tree Variational Autoencoder for 
Molecular Graph Generation 
Wengong Jin, Regina Barzilay, Tommi Jaakkola

ICML’ 18



Challenges with earlier model in molecule generation

Jin et al., Junction Tree Variational Autoencoder for Molecular Graph Generation, ICML’ 18



De Novo Design with VAE (ICML 2018) 

Task:  Generating valid 
molecular graph directly to 
graph instead of SMILES 
string

Method: instead of node to 
node generation, it uses the 
knowledge of functional 
group and performs group by
group generation. 

Jin et al., Junction Tree Variational Autoencoder for Molecular Graph Generation, ICML’ 18



De Novo Design with VAE (JT-VAE, 2018) 

Jin et al., Junction Tree Variational Autoencoder for Molecular Graph Generation, ICML’ 18



De Novo Design with VAE (JT-VAE, 2018) 

Jin et al., Junction Tree Variational Autoencoder for Molecular Graph Generation, ICML’ 18



Constrained Generation of Semantically Valid 
Graphs via Regularizing Variational 

Autoencoders
Tengfei Ma, Jie Chen, Cao Xiao, 

NeurIPS 18



Constrained Graph Generation (NeurIPS 2018) 

○ How to guarantee the generated sample is a valid graph?
● Ideas:

○ Represent  graphs as concatenation of its node matrix and edge matrix and 
treat it as an image –> so we can use the same decoder as image

○ an approach to imposing validity constraints in the training of VAEs.



Constrained Graph Generation (NeurIPS 2018) 

q A graph auto-encoder used to generate the graph

q In addition to a standard VAE (within the rectangle), we add a regularization 
term.

q f(x) is the original VAE loss

q h and g are regularization terms



Constrained Graph Generation (NeurIPS 2018) 

● A Lagrangian relaxation

● Training in Standard VAE

○ Monte Carlo sampling

● Similarly for the regularization term



Constrained Graph Generation (NeurIPS 2018) 

● constraints

○ Valence

■ Expected node capacity 
(sum of edges) <= valence

○ Connectivity

■ Every node pair much be 
connected by a path



Challenges of Molecule Generation

Generate molecules 
ü with desired property
ü syntactically correct molecules
ü semantically correct
ü High molecular property scores



Graph Convolutional Policy Network for Goal-
Directed Molecular Graph Generation

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec
NeurIPS 18



GCPN (NIPS 2018)

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NIPS 2018

Generate molecules 
ü syntactically correct molecules
ü semantically correct

Reinforcement learning optimizes 
intermediate and final rewards. 

Graph representation enables 
validity check in each state 
transition; Adversarial training 
imitates examples in given data. 

ü with desired property
ü High molecular property scores



GCPN (NIPS 2018)

https://neurips.cc/media/Slides/nips/2018/220cd(05-15-30)-05-15-35-12656-Graph_Convoluti.pdf

https://neurips.cc/media/Slides/nips/2018/220cd(05-15-30)-05-15-35-12656-Graph_Convoluti.pdf


GCPN (NIPS 2018)

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NIPS 2018


