4. De Novo Design of Drug Molecules

De novo design as the inverse task of molecule property prediction

Why Need De Novo Design

Design new therapeutic molecules

Generate molecules with high potency

Modify molecules to increase potency

Challenges of Traditional De Novo Methods

is estimated to be between 10^{23} and 10^{60} .

Generative Models for De Novo Design

Variational Autoencoders

CVAE (2016) Grammar VAE (ICML 2017) **JT-VAE (ICML 2018)** Constrained VAE (NIPS 2018) **GCPN (NIPS 2018)**

□ learn the probability distribution of molecule structures (e.g., characters in a SMILES) string) and then generate new structures (e.g., strings) which correspond to chemically meaningful molecule compound.

Autoencoders for De Novo vs. Classifiers for QSAR

Input raw molecule data or descriptors, Output drug properties

Reconstruct input molecule data by squeezing the data through a latent layer

Autoencoders

Subspaces whose dimensions correspond to meaningful concepts where most data lies

The # of hidden layers in encoder and decoder control the nonlinearity allowed

Variational Autoencoders: Encoder

- The encoder learn an efficient compression of the data into this lower-dimensional space.
- It outputs parameters to $q_{\theta}(z|x)$, a Gaussian probability density.

ent o this (*z*|*x*), a y.

Variational Autoencoders: Decoder

- The decoder learn learned to ulletreconstruct the input data given its latent representation.
- It achieves this via sampling from ulletthe output distribution of the encoder to get noisy values of the representations.

Variational Autoencoders: Training

The reconstruction error of the decoder is reduced by maximizing the log-likelihood of $p_{\phi}(\boldsymbol{x}|\boldsymbol{z})$

□ Simultaneously, the encoder is regularized to approximate the latent variable distribution $p_{\phi}(z)$ by minimizing the Kullback-Leibler divergence $KL(q_{\theta}(\mathbf{z}|\mathbf{x}), p_{\phi}(\mathbf{z}))$

If the prior follow a multivariate Gaussian distribution with zero mean and unit variance, then the loss function is $L(\theta, \phi)$ $= -E_{a_{\theta}(\boldsymbol{z}|\boldsymbol{x})} \left[\log(p_{\phi}(\boldsymbol{x}|\boldsymbol{z})) \right] + KL(q_{\theta}(\boldsymbol{z}|\boldsymbol{x}), p_{\phi}(\boldsymbol{z}))$

Challenges of Molecule Generation

Generate molecules with desired property syntactically correct molecules semantically correct High molecular property scores

Challenges of Molecule Generation

Generate molecules ✓ with desired property o syntactically correct molecules o semantically correct o High molecular property scores

ACS central science

Cite This: ACS Cent. Sci. 2018, 4, 268-276

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Rafael Gómez-Bombarelli,^{†,#} Jennifer N. Wei,^{‡,#} David Duvenaud,^{¶,#} José Miguel Hernández-Lobato,^{§,#} Benjamín Sánchez-Lengeling,[‡] Dennis Sheberla,[‡] Jorge Aguilera-Iparraguirre,[†] Timothy D. Hirzel,[†] Ryan P. Adams,^{∇,||} and Alán Aspuru-Guzik^{*,‡,⊥}

Research Article

De Novo Design with VAE (CVAE, ACS Central Science 2018)

Train Gaussian Process (GP) to maximize property scores. A new point was then selected by sequentially maximizing the expected improvement acquisition based on GP model.

Gomez-Bombarelli et al., Automatic chemical design using a data-driven continuous representation of molecules, ACS Central Science 2018

De Novo Design with VAE (CVAE, ACS Central Science 2018)

QM9: 108,000 molecules with fewer than 9 heavy atoms

ZINC: 250,000 drug-like commercially available molecules

Source ^a	$Dataset^{b}Samples^{c}$		$\log P^d$ SAS ^e		QED^f	% i
Data	ZINC	2401	2 46	2.05 (0.82)	0.72	100
Data	ZINC	249K	(1.43)	3.03 (0.83)	(0.13)	100
\mathbf{GA}	ZINC	5303	2.84	3.80(1.01)	-0.82	6.5
			(1.86)		(0.71)	
VAE	ZINC	8728	2.67	$3.18\ (0.86)$	-0.96	4.5
			(1.46)		(0.75)	
Data	QM9	134k	0.31	4.24(0.91)	0.99	0.0
			(1.00)		(1.20)	
\mathbf{GA}	QM9	5470	0.96	4.47(1.01)	0.68	0.0
			(1.53)		(0.97)	
VAE	QM9	2839	0.30	4.34 (0.98)	0.47	0.0
			(0.97)		(0.08)	

% generated molecules found in e-molecule database

Gomez-Bombarelli et al., Automatic chemical design using a data-driven continuous representation of molecules, ACS Central Science 2018

De Novo Design with VAE (CVAE, ACS Central Science 2018)

The property scores improve during the optimization

Gomez-Bombarelli et al., Automatic chemical design using a data-driven continuous representation of molecules, ACS Central Science 2018

Challenges of Molecule Generation

Generate molecules ✓ with desired property ✓ syntactically correct molecules o semantically correct o High molecular property scores

Grammar Variational Autoencoder

Matt J. Kusner, Brooks Paige, José Miguel Hernández-Lobato **ICML' 17**

Challenge: Molecule is constructed using a "formal language", any syntax change will cause error

Opportunity: Syntax is known and fixed. Parse is unique.

Goal: Learning syntactic rules to produce valid outputs

Learning syntactic rules to produce valid outputs

Kusner et al., Grammar Variational Autoencoder, ICML' 17

Extract production rules by pre-order traversal on the branches.

branched atom atom, ringbond

Map into a continuous vector using CNN

Decode continuous vectors back to SMILES strings

Pass the continuous vector using RNN to produce vectors or logits A "pushdown automation" algorithm to select valid rules and construct SMILES

Kusner et al., Grammar Variational Autoencoder, ICML' 17

Goal: maximize the water-octanol partition coefficient (logP), an important metric in drug design that characterizes the drug-likeness of a molecule.

	% of valid	Avg. Score			
CVAE	0.17 (0.05)	-54.66 (2.66)			
GVAE	0.31 (0.07)	-9.57 (1.77)			

GVAE produces a coherent latent space of molecules.

Japan group Lang $\sqrt{2}$

Challenges of Molecule Generation

Generate molecules

- ✓ with desired property
- ✓ syntactically correct molecules
- ✓ semantically correct
- o High molecular property scores

Junction Tree Variational Autoencoder for Molecular Graph Generation Wengong Jin, Regina Barzilay, Tommi Jaakkola ICML' 18

Challenges with earlier model in molecule generation

- Not every graphs is chemically valid
- · Invalid intermediate states \rightarrow hard to validate
- Very long intermediate steps \rightarrow difficult to train (Li et al., 2018)

De Novo Design with VAE (ICML 2018)

Task: Generating valid molecular graph directly to graph instead of SMILES string

Method: instead of node to node generation, it uses the knowledge of functional group and performs group by group generation.

Valid

De Novo Design with VAE (JT-VAE, 2018)

De Novo Design with VAE (JT-VAE, 2018)

Jin et al., Junction Tree Variational Autoencoder for Molecular Graph Generation, ICML' 18

Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders

Tengfei Ma, Jie Chen, Cao Xiao, NeurIPS 18

- How to guarantee the generated sample is a valid graph?
- Ideas:
 - Represent graphs as concatenation of its node matrix and edge matrix and 0 treat it as an image -> so we can use the same decoder as image
 - an approach to imposing validity constraints in the training of VAEs.

$$\begin{array}{c|c} G^{(l)} \rightarrow & \mathsf{encoder} & \rightarrow z^{(l)} \rightarrow & \mathsf{decoder} & \rightarrow G^{(l)} \text{ (standard VAE)} \\ \\ & & \mathsf{synthetic} \ z^{(\underline{l})} \rightarrow & & \rightarrow G^{(\underline{l})} \text{ (regularization)} \end{array}$$

- A graph auto-encoder used to generate the graph
- In addition to a standard VAE (within the rectangle), we add a regularization term.
- \Box f(x) is the original VAE loss
- h and g are regularization terms

f(x) \min subject to for almost all $z \sim p_x(z)$, $h_1(x, z) = 0, \dots, h_m(x, z) = 0,$ $q_1(x,z) < 0, \dots, q_r(x,z) < 0.$

• A Lagrangian relaxation
$$-L_{\text{ELBO}}(\theta,\phi) + \mu \sum_{i} \left[\int g_{i}(\theta,z)^{2}_{+}p_{\theta}(z) dz \right]^{\frac{1}{2}}$$

• Training in Standard VAE

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z})\right]$$

$$\circ \text{ Monte Carlo sampling } \mathbf{z}^{(l)} \sim q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})$$

• Similarly for the regularization term

$$\frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)})$$

$$-L_{\text{ELBO}}(\theta, \phi) + \mu \sum_{i} g_i(\theta, z)_+, \text{ where } z \sim p_{\theta}(z)$$

constraints

- $_{\circ}$ Valence
 - Expected node capacity
 (sum of edges) <= valence
- Connectivity
 - Every node pair much be connected by a path

16	eration (N	leurIPS	2018)		
	Table 2	: Compariso	on with other	vAEs.	
_		Q	M9		
	Method	% Valid	% Novel	% Recon.	
	Proposed	96.6	97.5	61.8	
	GVAE	60.2	80.9	96.0	
	CVAE	10.3	90.0	3.61	
-		ZI	NC		
_	Method	% Valid	% Novel	% Recon.	
-	Proposed	34.9	100	54.7	
	GVAE	7.2	100	53.7	
	CVAE	0.7	100	44.6	

Challenges of Molecule Generation

Generate molecules

- ✓ with desired property
- ✓ syntactically correct molecules
- ✓ semantically correct
- ✓ High molecular property scores

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec NeurIPS 18

GCPN (NIPS 2018)

Generate molecules

syntactically correct molecules
 semantically correct

Graph representation enables validity check in each state transition; Adversarial training imitates examples in given data. with desired property
 High molecular property scores

Reinforcement learning optimizes intermediate and final rewards.

erty operty scores ng optimizes I rewards.

GCPN (NIPS 2018)

(3) Optimize using PPO

https://neurips.cc/media/Slides/nips/2018/220cd(05-15-30)-05-15-35-12656-Graph Convoluti.pdf

GCPN (NIPS 2018)

Generating graphs from scratch: Over 60% higher scores

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Method	Penalized logP			QED				
	1st	2nd	3rd	Validity	1st	2nd	3rd	Validit
ZINC	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%
ORGAN	3.63	3.49	3.44	0.4%	0.896	0.824	0.820	2.2%
JT-VAE	5.30	4.93	4.49	100.0%	0.925	0.911	0.910	100.0%
GCPN	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%

Modifying existing graphs: Over 180% higher scores improvement

