2. Drug Repositioning



Types of Drug Repositioning

5 B O

Finding a new clinical use Finding a clinical use for a Finding a new life for
for an approved drug stalled clinical development retracted drug
stage compound




Drug Repositioning Saves Money and Time

Drug discovery Pre-clinical Phase 1 Phase 2 Phase 3
Time spent 4-5 years 1-2 years 1-2 years 1-2 years 2-3 years
$ spent $550M $125M $225M $250M $250M
5,000 - 10,000 : 5-10 2-5 1-2
Output compounds 10-20 candidates candidates candidates candidates

|

Reposition a stalled phase 2 drug will save $900M and 6-9 years




Example of Success in Drug Repositioning

DRUG NAME

Amitripyline
Amphotericin B
Aspirin
Azathioprine
Bimatoprost
Bleomycin
Bromocriptine
Buprenorphine
Bupropion

Canakinumab
Clofazime
Colchicine
Colesevelam
Crizotinib
Cycloserine
Cyclosporine
Dapoxetine
Dimethyl Fumarate
Donepezil
Doxepin
Duloxetine

Eflornthine

Etanercept
Everolimus
Finasteride

Fluoxetine
Gabapentin
Galantamine
Gemcitabine
Glycopyrronium
Histrelin

Antidepressant

Antifungal

Inflammation, Pain
Rheumatoid Arthritis (RA)
Glaucoma

Antibiotic

Parkinson’s Disease

Pain

Antidepressant

Rheumatoid Arthritis (RA)
Tuberculosis

Gout

LDL-lowering

Lymphoma

Tuberculosis

Organ transplant rejection
Antidepressant

Psoriasis

Alzheimer’s Disease
Antidepressant
Depression & GAD

Cancer

Rheumatoid Arthritis (RA)
Organ rejection
Hypertension

Antidepressant

Seizure

Chronic fatigue syndrome
Anti-viral

Anti-ulcer

Prostate cancer

ORIGINAL INDICATION NEW INDICATION

Neuropathic pain
Leishmaniasis

YEAR

2005
1997

Anti-platelet, heart attack, stroke Various

IBD, MS, organ transplants
Eyelash growth

Cancer

Type Il diabetes

Drug treatment

Smoking cessation
Weight-loss (combi-therapy)
Muckle-Wells Syndrome
Leprosy

Familial mediterranean fever
Type Il diabetes

NSCLC

CNS disorders

Psoriasis, RA

Premature ejaculation

MS

Dementia

Atopic dermatitis

Stress urinary incontinence
Fibromyalgia

Pain

Hirsutism

Sleeping sickness

Plaque psoriasis

Various cancers

Benign prostate hyperplasia
Male pattern baldness
PMDD

Postherpetic neuralgia
Alzheimer’s Disease
Various cancers

COPD

Precocious puberty

Various
2008
1973
2009
2002
1997
2014
2009
1986
2009
2008
2011
Various
1997
2004
2013
2006
2003
2004
2008
2010
2000
1990
2004
Various
1992
1997
2002
2004
2001
Various
2005
2007

PHARMA COMPANY

AstraZeneca
NeXstar Pharma
Various
Various
Allergan
Kayaku/BMS
Novartis
Reckitt-Benckiser
GSK
Orexigen/Takeda
Novartis
Geigy

URL Pharma
Daiichi-Sankyo
Pfizer

Various
Novartis

)&

Biogen IDEC
Eisai/Pfizer
Various

Lilly

Lilly

Lilly

Gillette
Aventis
Amgen/Pfizer
Novartis
Merck

Merck

Lilly

Parke Davis
Various

Lilly
Sosei/Novartis

Endo Pharma



Example of Success in Drug Repositioning

Hydroxychloroquine
Ibuprofen
Imatinib

Imfliximab
Iproniazid
Lomitapide
Methotrexate
Minoxidil
Milnacipran
Miltefosine
Naltrexone
Onabotulinumtocin

Paclitael
Paroxetine
Pertuzumab
Plerixafor
Pramipexole
Pregabalin
Propranolol
Retinoic Acid
Raloxifene
Rituximab
Ropininole
Sildenafil

Sunitinib
Thalidomide

Zidovudine

Malaria
Inflammation, pain

CML

Autoimmune diseases
Tuberculosis
Hypercholesterimia
Cancer

Hypertension
Antideprressant

Cancer

Opiod/alcohol addiction

Facial spasm

Various cancers
Antidepressant
Various cancers

AIDS/HIV
Parkinson’s Disease

Anticonvulsant, neuropathic pain

Hypertension

Acne

Osteoporosis
Various cancers
Parkinson’s Disease
Angina

GIST and RCC

Anti-nausea

Cancer

Lupus, rheumatoid

OA, RA, headache, migraine
GIST

ALL

Crohn’s Disease
Antidepressant

HoFH

Psoriasis, RA

Hair Loss

Fibromyalgia

Leishamaniasis

Weight-loss (combi-therapy)
Cervical dystonia

Chronic migraine

Facial cosmetics

Stent restenosis prevention
Menopausal hot flashes
HER-2 + breast cancer

Lymphoma & multiple myeloma

Restless leg syndrome
Fibromyalgia

Migraine, angina, tremors
Acute myeloid leukaemia
Breast cancer
Rheumatoid Arthritis
Restless leg syndrome
Erectile dysfunction

PAH

Pancreatic tumors
Leprosy

Multiple myeloma
HIV/AIDS

Various
Various
2012
2013
1998
1958
2012
2001
1988
2009
2014
2014
2000
2010
2012
Various
2013
2013
2008
2006
2007
Various
1995
2007
2004
2005
1998
2005
2010
1998
2006
1987

Various
Various
Novartis
Novartis
Janssen
Various
Aegerion Pharma
Barr Labs
Upjohn

Forest Pharma
Zentaris
Orexigen/Takeda
Allergan
Allergan
Allergan
Various

GSK
Genetech
Genzyme
Boehringer
Pfizer

Various
Hoffman La Roche
Lilly

IDEC

GSK

Pfizer

Pfizer

Pfizer
Celgene
Celgene
Burroughs



Success Stories:

Angina erectile |
(1980s) dysfunction pulmonary arterial
(1998) hypertension
@ /;6 (recent)
Clinical trial O\o@(\%
discontinue % &°

Sildenafil

dThe repositioning
opportunities came from
secondary functions of the

enzyme targeted.

dDrug repositioning can be
logically identified rather
than discovered by
chance.



Success Stories: Thalidomide

O O H
/
N
e
thalidomide

RS
4
N
%\Q
< @ ~ @ o
& &
Morning sickness

In pregnant
women (1957)

erythema nodosum
leprosum

Retracted due to side
effect of newborn
anatomical malformations

 The opportunity came

from a disease related
off-target.

1 A better understanding
of the proteins
interacting with the
molecule could have
been helpful to predict
the opportunity



Relationship between biomedical concepts in repositioning

translation role

Biological process &

Protein Molecular function

transcription

outcome

mode and

mechanism' of
action Phenotype
CMap
interaction
clinical signs &
(side) effects dysfunction symptoms
indication

https://www.ebi.ac.uk/sites/ebi.ac.uk/files/shared/documents/phdtheses/Croset Thesis.pdf



https://www.ebi.ac.uk/sites/ebi.ac.uk/files/shared/documents/phdtheses/Croset_Thesis.pdf

Drug Repositioning via Drug Target Interaction Prediction

Target: disease modifying proteins |dentify potential off-targets
Drug: molecules that interact with target via Protein X Protein Y
activating or inhibiting its biological process Similarity of
| binding site
R target off-target
Active A" By % "
t - A :‘ ) /,’
> 2 ol binds -
g PR binds

Molecule Docking: screening molecules

against the 3D structure of proteins. Molecule Z



Challenges of Traditional DTl Methods

Protein X Protein Y

Similarity of

binding site Docking based? 3D data must

e available.
-How to predict using 2D Data?

binds et Structural similarity? Sensitive
- binds to surrounding substructure

g How to recognize contextual
difference?

Molecule Z : : :
Via biological assays?

Time and cost consuming



A network integration approach for drug-target
iInteraction prediction and computational drug
repositioning from heterogeneous information

Yunan Luo, Xinbin Zhao, Jingtian Zhou, Jinglin Yang, Yanqing Zhang, Wenhua Kuang, Jian Peng Ba
Ligong Chen&Jianyang Zeng

Nature Communications 8, Article number: 573 (2017)  Download Citation %



Drug Repositioning via Drug Similarity

Mebhydrolin (Drug A) Serotonin (Drug B)
NH,

@ similarity H
I:l < > | A\
/
~ ~ H

~

Hy  S~__  binds
lbinds RN l binds

H, histamine receptor

5-Hydroxytryptamine
(serotonin) receptor 5A

guilt-by-association

Drug Protein

Side /
effect \ Disease /
A

AAA
A A

heterogeneous network



DTINet (Nature Communication 2017)

* .‘,A Interaction, association Interaction, association !.--
g\ and similarity matrices and similarity matrices
w .t" = N - . _
Drug—drug Drug—disease 1 T T ] Protein—protein
— |l -

E—

-

1

O~
AT

Drug side-effect  Drug similarities

I
-

!«"\ A
£A A

Protein—disease Protein similarities

Compact feature Compact .feature
learning learning
YV
Matrix representation Matrix representation - -
of drug features Projection matrix of protein features Pi=xZy’;
X X X 4 4 X , 6 = 'Y N,
! Nd
—

Low-dimensional vector fi N, ‘ N
representation of drug features ; !
P g I Supervised i Prediction scores of
. learning drug—protein interactions
d
Low-dimensional vector 1
representation of protein features
N,: number of drugs P N,
N;: number of proteins
fy: dimension of drug features
f,  dimension of protein features N, Analysis and validation

Y. Luo, J. Zhao, X.and Zhou, J. Yang, W.and Peng J. Zhang, Y.and Kuang, L. Chen, and J. Zeng. 2017. A network integration approach for
drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8 (2017)



DTINet (Nature Communication 2017)

Network 1

5

Network 2

RWR

RWR
—

G

Network K

13

Compact feature learning

(T @] N

dim(s)=n

parameterized
l multinomial
diffusion states logistic models
Observed s; Model §;
S Minimize 3
g hh ~ difference %‘
T Node ) a Node
v

dim(x) =d<<n
Low-dimensional representations of
feature vectors

Y. Luo, J. Zhao, X.and Zhou, J. Yang, W.and Peng J. Zhang, Y.and Kuang, L. Chen, and J. Zeng. 2017. A network integration approach for
drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8 (2017)



DTINet (Nature Communication 2017)

Classic setting Skewed setting

a
N BLMNII . BLMNII
S NetLapRLS mmm NetlapRLS
N HNM . HNM
L| B CMF 4 09+ 4 0.8}{mmm CMF
m DTINet EEm DTINet
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0.7 |

06

5 05 BLMNII NetLapRLS HNM CMF DTINet 0.0 BLMNII NetLapRLS HNM CMF DTINet
BLMNII NetLapRLS HNM CMF DTINet ' BLMNII NetLapRLS HNM CMF DTINet
b ()
10 AUROC 1.0 AUPR
| [ BLMNI ' ' ' 10 AUROC 0.5 AUPR
= NetLapRLS ’ ’ ' . : '
=M = NetLsphLS
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BN DTINet
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BLMNII NetLapRLS HNM CMF DTINet BLMNII NetLapRLS HNM CMF DTINet BLMNII NetLapRLS HNM CMF DTINet BLMNII NetLapRLS HNM CMF DTINet

Y. Luo, J. Zhao, X.and Zhou, J. Yang, W.and Peng J. Zhang, Y.and Kuang, L. Chen, and J. Zeng. 2017. A network integration approach for
drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8 (2017)
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DTINet (Nature Communication 2017)

Withholding DTIs of new drugs Withholding DTIs of singleton drugs
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Y. Luo, J. Zhao, X.and Zhou, J. Yang, W.and Peng J. Zhang, Y.and Kuang, L. Chen, and J. Zeng. 2017. A network integration approach for
drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8 (2017)



DTINet (Nature Communication 2017)

Nitrazepam Chlordiazepoxide
Estazolam F|ura2epam
GLRA2 .
® cHRMs ®
CHRM3 . CHRM2
cHrvs @
CHRM1
HTR2A
. . Clozapine

@ H™RID ® umrie

nrrie @ TTHA @

HTRiA @ HTR?
HTR6 @

HTR2C

®
@ GABRGS O
= i @ GABRRI
— GABRG1.
BRA1
@ /A ® GcABRB3 @
GABRA4 ‘@)  GABRA3 ABCC8
GABRG2
GA;M @® GABRD
GABRR2
Chlorpropamide
O O
HRH1 @ DrRD1 @
DRD4 @ DRD2
HRH4 DRD3
Thioridazine .
@® «cnitd
KCNH2
®
@ SLC6A3
ADRA2A ©
ADRATA (@ ADRAI1B
aDRA28 @
ADRA2C

Y. Luo, J. Zhao, X.and Zhou, J. Yang, W.and Peng J. Zhang, Y.and Kuang, L. Chen, and J. Zeng. 2017. A network integration approach for
drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8 (2017)



DTINet (Nature Communication 2017)

(a) (b) (c) |
Telmisartan Alendronate Chlorpropamide
120 120
120 COX-1 COX-1 o~ cox-1
- COX-2 COX-2 i
1004 21009 21009
2 80- 2 80- 2 80
© 0o . o
T 60- T 60- T 60
x | x ] é ]
S 40- S 401 S 40-
2 32 5] X 20-
© 20-_ COX-1 ICq=41.97 uM ° 20_ COX-1 IC5=90.73 uM | cox-11C5=2235 M
0-4C0X21C=01.75 M . . 0Cox21Cy=184.1 M . -t 04COX21Cq=1519 uM . 'o
0 1 2 3 0 1 2 3 0 1 2 3
Log (pM) Log (pM) Log (M)

Experimentally validate the novel interactions between three drugs and the cyclooxygenase
proteins predicted by DTINet. Identify three potential cyclooxygenase inhibitors in preventing
inflammatory diseases.



Drug Target Binding Prediction via Neural Embedding

Drug representation Interaction outcome

=) ..k

Compound data

g %‘ I concatenation

2D Protein sequence

New disease
Protein representation relevant off-targets



DeepDTA: Deep Drug-Target Binding
Affinity Prediction

Hakime Oztiirk, Elif Ozkirimli, Arzucan Ozgiir

Bioinformatics 34(17) - January 2018



DeepDTA (Bioinformatics 2018)

Drug representation

()
e — —_
o CN=C=0 CNN

© } -

©
' [1 363163 9] FU”y
1D SMILES string connected
7 1
c CNN concatenation  Binding affinity values:

dissociation constant (Kd),
inhibition constant (Ki), or
the half maximal inhibitory

concentration (IC50).

A >
1D Protein sequence

Protein representation

Ozturk et al., DeepDTA: Deep Drug-Target Binding Affinity Prediction, Bioinformatics 2018



DeepDTA (Bioinformatics 2018)

Davis Kinase binding affinity data set

Proteins Compounds Interactions

Davis (K4) 442 68 30056
KIBA 229 2111 118254
Metrics

1. Concordance Index (ClI)
2. mean squared error (MSE)

Baselines
1. KronRLS
2. SimBoost

Proteins Compounds  CI (std) MSE
KronRLS [47] Smith-Waterman Pubchem Sim 0.871 (0.0008) 0.379
SimBoost [29] Smith-Waterman Pubchem Sim 0.872 (0.002)  0.282
DeepDTA Smith-Waterman Pubchem Sim 0.790 (0.009)  0.608
DeepDTA CNN Pubchem Sim 0.835 (0.005)  0.419
DeepDTA Smith-Waterman CNN 0.886 (0.008) 0.420
DeepDTA CNN CNN 0.878 (0.004)  0.261

KIBA large-scale kinase inhibitors bioactivity data

Proteins Compounds  CI (std) MSE
KronRLS [47] Smith-Waterman Pubchem Sim 0.782 (0.0009) 0.411
SimBoost [29] Smith-Waterman Pubchem Sim 0.836 (0.001)  0.222
DeepDTA Smith-Waterman Pubchem Sim 0.710 (0.002)  0.502
DeepDTA CNN Pubchem Sim 0.718 (0.004)  0.571
DeepDTA Smith-Waterman CNN 0.854 (0.001)  0.204
DeepDTA CNN CNN 0.863 (0.002) 0.194



DeepConv-DTI: Prediction of drug-target
Interactions via deep learning with convolution
on protein sequences.

Lee |, Keum J, Nam H
PLOS Computational Biology, 2019



DeepConv-DTI (PLOS Comp Bio 2019)

Known DTIs + randomly generated negative DTIs

DTI database

- DrugBank / # of compounds  : 11,950
- KEGG
- IUPHAR # of positive DTls : 32,568

# of proteins : 3,675 ¢

Hyperparameter
Optimization
Using Validation Dataset

E globatmaxpooling layer - Predicted negative DTI -
: y Y :

MDRGSZKAZKTO QS

Fully connected layer E "
: # of compounds : 499
" #of proteins . 538
' #of positive DTIs : 370
Deep Neural Network Model L sof ﬁe ative DTIs: 507
. Output score ", g :
Construction i
E ]-”-[U # of compounds  : 21,907
. - Active binding assays + Inactive other assays  # of proteins © 698 .
: U U U - PubChem Bioassay # of positive DTls : 18,228 E
. - KinaseSAR(ari # of negative DTls: 18,228 .
: New DTls Prediction using Independent Dataset

Lee I, Keum J, Nam H (2019) DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS
Computational Biology 15(6): €1007129. https://doi.org/10.1371/journal.pcbi.1007129



DeepConv-DTI (PLOS Comp Bio 2019)

All proteins and compounds D - New proteins and compounds "
100 1.0 :
[ DeepConv-DTI (Proposed) B DeepDTI (2017 O Deepconv-Dﬂ(Proposed)
=
MFDR (2016) B DeepDTA (2018) ECTD M Similarty
8. 80 ; 0.8
0}
8]
: :
2 60+ £ 60 0.6
@© —
E 40. o 40 0.4
20. 20 0.2
0 0 0.0
Sen Spe Pre Acc F1

Lee I, Keum J, Nam H (2019) DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS
Computational Biology 15(6): €1007129. https://doi.org/10.1371/journal.pcbi.1007129



DeepConv-DTI (PLOS Comp Bio 2019)

A B
Binding site detection result in scPDB

Binding site detection result in scPDB indi i i i
with adjusted 1% significatn level g Binding site detection result in scPDB

with adjusted 5% significatn level with adjusted 10% significatn level

binding site bindin binding site
g s g

binding site bindin binding site
gs 9

C not detected N not detec O not detected




DeepConv-DTI (PLOS Comp Bio 2019)

C Protein and ligand D Binding site and ligand
of 1ny3 1 of 1ny3 1

Number of convolution results covering residue

0 1 2 3 <

Lee I, Keum J, Nam H (2019) DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS
Computational Biology 15(6): €1007129. https://doi.org/10.1371/journal.pcbi.1007129



Interpretable Drug Target Prediction Using Deep
Neural Representation

Kyle Gao, Achille Fokoue, Heng Luo, Arun lyengar, Sanjoy Dey, Ping Zhang
IJCAI' 18



Gene Ontology (GO)

GO Term -

annotations

Amino acids
sequence

(000 - 000}

Interpretable Drug-Target Prediction (IJCAI’ 18)

GO Term

Embedding Lookup
For GO terms

Protein (p)

Embedding Lookup
For Amino Acids

v

LSTM [—>| LSTM

‘A
~
.

\

-

o<

o

R layers of graph CNN

\4
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A 4

[Jeaur]
e ]
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Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation, IJCAI’ 18



Interpretable Drug-Target Prediction (IJCAI’ 18)

Drug1 Drug2 Drug 3 Drug 4

Target D | @G : Labels are based on IC50
Protein sequences 1 value, a primary measure of
Tafzget P binding effectiveness,
Gene Ontology labels Farget positive if its IC50 |_s Ie_ss
3 -1 1 than 100nm, negative if
Target IC50 greater than 10,000nm
4 1
Chemical structures
BindingDB (bindingdb.org) Dataset Protein Drug  Positive Negative
Train 758 43,160 28,240 21,915
Dev 472 5,077 2,831 2,776
Test 466 5,016 2,706 2,802

Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation, I[JCAI’ 18



Interpretable Drug-Target Prediction (IJCAI’ 18)

Target Drug
Setting 1 Observed Observed
Setting 2 Observed NOT Observed
Setting 3 NOT Observed Observed
Setting 4 NOT Observed NOT Observed

Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation, IJCAI’ 18



Interpretable Drug-Target Prediction (IJCAI’ 18)

MF (matl’ix faCtorization) (1) Seen Protein and Seen Drug (2) Seen Protein and Unseen Drug
A matrix with drugs and targets as rows and columns
Predict missing IC50 values using SVD

0.9

Tiresias (similarity-based)

For a DTI pair, build a feature vector from statistics of
similarity measures against known DTI pairs e
Classification with a logistic regression model 05

0.7

ROC Accuracy AUPR ROC Accuracy AUPR

(3) Unseen Protein and Seen Drug (4) Unseen Protein and Unseen Drug

DBN (feature-based DNN classifier)

Represent protein using sequence composition descriptors  °°; |
(a vector of frequencies of {1,2,3}-gram sub-sequence) 0. l I | _

Represent drug using ECFP.Transform features and make |
predictions with a Deep Belief Networks (DBN) model
consisting of stacked RBMs 0.6 l

0.5-

Gao KY, Fokoue A, Luo H, et al. Interpretable drug target prediction using deep neural representation, |[JCAI’ 18



Summary of Drug Repositioning

Neural network based
molecular representation

* DL based DTI prediction
* Network integration based similarity




3. Drug drug interaction



Why Need Drug Drug Interaction (DDI) Detection

Taking together

Post-marketing
reporting mA

&

Sildenafil

-+

Excessive blood
pressure drops
Isosorbide mononitrate



Adverse Drug Reaction/
Drug-drug Interaction Prediction

Disease

O O

Drug g ﬁ

~a > Oﬁ Adverse drug reaction



Graph Convolutional Networks (GCN) Basic setting

Drug

Drug Drug —
3 2 —
5
Drug similarity Low-dimensional node
network embeddings

Intuition: Map nodes to d-dimensional embeddings such that
similar nodes in the graph are embedded close together



Graph Convolutional Networks (GCN) Basic setting

Graph g = (v, ¢, A)
4 v. vertex (or node)

/ \ . edge (or link)
- A: adjacency matrix

A graph signal x is a real-valued

vector defined on all vertices



GCN (spatial convolution)

layer 0
layer 1

Dr2ug

1. Each X4 DTQ

layer 2

node is
initially
attached 11 ‘ -—’ Drg,ug —_—
with a
feature . Drug 3.all nodes are updated,
vector ¢ Drug performing a layer of
S forward propagation.
X1

2. For each node, the vectors of
the neighbors are summed (with
weights and transforms) into it.



Graph Convolutional Network (Kipf and Welling, 2016)

< Input : Node features X, Adjacency matrix A 2 -
/1 Output: Node embedding Z -
@ Method 1 1 | %ﬁﬁ‘ : - o
HD = £(D"2AD ZHOWW)
where A = A + I, D is a diagonal matrix s.t.
Dy = X; Aij, W parameters H is node f()

representation of layer [ -




Modeling polypharmacy side effects
with graph convolutional networks.

Zitnik M, Agrawal M, Leskovec J. Bioinformatics
2018



N~
[\

=

Doxycycline Q /@ Simvastatin

=P =
Iy @Mupirocin

O Drug @ Gene E Feature vector
ry Gastrointestinal bleed effect O©—O0 Drug target interaction

> Bradycardia effect ©—O0 Physical protein binding

Drugs

Genes

DECAGON (Bioinformatics 2018)

Predict labeled edges between drugs
* |.e., predict the likelihood that an edge

(c,1y,5) exists

Drug combination (c, s) leads to
polypharmacy side effect r,

Simvastatin

®

V)

Ciprofloxacir@
2 T,
Doxycycline @/ b Mupirocin

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018



Decagon (Bioinformatics 2018)

i —
Doxycycline (:z /@ Simvastatin
(k) (k)

Ciprofloxacin (@ r, @Mupirocin @ B

h(k+1)

C

= |nput: graph, additional
node features

k)
- O, W!

. A t

= Qutput: node embeddings
$ohe . h(_ k)

©Drug O Gene H Feature vector il N¢
ry Gastrointestinal bleed effect O—0 Drug target interaction . rug target relation
> Bradycardia effect O©—O Physical protein binding

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018



Decagon (Bioinformatics 2018)

Simvastatin
@ polypharmacy
P side effects
Ciprofloxacin P(©, e @)
query
Iy r drug pair p(©, - @)
: Zc
Doxycycline CDj bMupirocin :
. p(©’ r4! @)
= |nput: Query drug pairs
and their embeddings . JONNO)
= Qutput: predicted edges S
ODrug © Gene g Feature vector
ry Gastrointestinal bleed effect O—O0 Drug target interaction r
> Bradycardia effect O©—O0 Physical protein binding p(@, m@)

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018



Decagon (Bioinformatics 2018)

Data:

Molecular: protein-protein interactions and drug
target relationships

Patient data: Side effects of individual drugs,
polypharmacy side effects of drug combinations

Setup:

Construct a heterogeneous graph of all the data
Train: Fit a model to predict known associations
of drug pairs and polypharmacy side effects
Test: Given a query drug pair, predict candidate
polypharmacy side effects

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018

Decagon (3-layer)

Decagon (2-layer)

RESCAL

Node2vec

Drug features

0.834

0.809

0.693

0.725

0.736

0.776

0.762

0.613

0.708

0.722

0.731

0.713

0.476

0.643

0.679



Enhancing drug—drug interaction extraction from

texts by molecular structure information

Asada M, Miwa M, Sasaki Y.
ACL 2018



Enhancing DDI from Texts by Molecular Structure Information (ACL
2018)

Embedding Convolution Pooling Fully connected
| WCOTHJI I hall ]
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Enhancing DDI from Texts by Molecular Structure Information (ACL

2018)

DrugBank entries
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Associating DrugBank entries with texts and
molecular graph structures

Methods P R F (%)
Liu et al. (2016) 75.29 60.37 67.01
Zheng et al. (2017) 759 68.7 715

Lim et al. (2018) 744 693  71.7

Text-only 71.97 68.44 770.16
+ NFP 72.62 71.81 72.21
+ GGNN 73.31 71.81 72.55

Table 1: Evaluation on DDI extraction from texts

DDI Type Mech. Effect Adv. Int (%)
Text-only 69.52 69.27 79.81 48.18
+ NFP 72770 7244  79.56 46.98
+GGNN 7383 71.03 81.62 45.83

Table 2: Performance on individual DDI types in

F-scores

Asada M, Miwa M, Sasaki Y. Enhancing drug—drug interaction extraction from texts by molecular structure information. ACL 2018



Drug Similarity Integration Through Attentive
Multi-view Graph Auto-Encoders

Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang
IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

Goal: Learn better drug similarity based on
Multiview drug features

N2 Drug Features (database)
'\ D
\ O
3 Label Side Effect (SIDER)
S ) B Off-Label Side Effect (OFFSIDES)
Similar © Molecular substructure

Drug Indication (MedDRA)

Guilt-by-association



Multi-View GAE for DDI Prediction (IJCAI 18)

DDI as node
label vector

1 Drug as graph nodes
1 DDI labels as node labels

1 Drug features as node attributes
d Fuse across multiple views for

improved drug similarity

A .)I{'.
O sim(AB)

View 2

View 1 View 3

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018




Multi-View GAE for DDI Prediction (IJCAI 18)
0 State-of-the-art
o Nearest neighbor methods (Zhang et al, 2015, Zhang et al, 2017 )
o Random walk based methods (Wang et al, 2010)
o Unsupervised iterative methods (Angione et al, 2014, Xu et al, 2016)
o Multiple kernel learning (Zhuang et al, 2011, McFee et al, 2011)

2 Challenges

o the underlying relations of biomedical events are often nonlinear and complex over all
types of features

o features have different importance toward different target outcomes

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



GCN (Kipf and Welling, 2016)

» Objective: graph node embedding for arbitrary graphs, distance similarity of
local graph structures
« Input

- Node features x

- Adjacency matrix A that represents graph structure
» Output: Node embedding Z
» Method

HOD = £(D2AD ZHOW®)

where A = A + Iy, D is a diagonal matrix such that D;; = ¥, 4;;, W is layer-
specific parameter matrix, H®) is node representation of (th layer.

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

Y o y- softmax(W[ZW, ...,Z2(D| + b)

/\

7(1) 7(2)
1 For view u €{1,..., T}, we encode the nodes

1
GCN GCN as zw — f(X(u),A(u); Wgu))
= softmax(A*ReLU(A*XW W(()”))Wgu))

I |
— ~( L~ (a1 ()
where 4% = DW2AWPp™ =3 gnd w," and
W are weight matrices.

G, = {V,A(l)} G, = {V,A(Z)}

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

reconstruct V from Z to minimize
— _ 2
GCN encdder autoencoder loss, L,; = Y |X — X'|~.

G ={V,A)
' \ A= z diag(g) * At

V Y
GCN decdder” When we do not have labels, we
Z

, Normalize U
g U — WUAY 4+ hbY% ) g
Gy = {VrA(l)} Gy = {V»A(z)} attention weights decided

by data and target



Multi-View GAE for DDI Prediction (IJCAI 18)

VY
GCN degdfier” SemiGAE (for partial labels)
/
GCI\YenCdd\er Objective: min L = Lygin + Leg
= {V A}
Training loss for labeled data
Lirain = 2 Z -y In y,
e YEY train Y'€EN(Ztrqin)
Auto-encoder loss for all data
G, ={V,ADY G, ={V,AD) Leg = XIX — X'|?

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

Y
GCN dec;/jkier
7 TransGAE (for lack of node features)
GCNM encdder For the case when we do not have node feature
G = {Y,A)

| min L = |Y,train — Yt’rainl2 T |Y,test — Ytestl2 T .ulYtestl2

where we also treat DDI label as input variable

S

{Y’train' Y’test} — f’(f({ytrain' Ytest}:A)JA)
G, = {V,A(l)} G, = {V,A(Z)}

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Data (Binary)

Dimension

drugs (pairs)

645 (63473)

DDI

1318

label ADR

4192

off-label ADR

10093

Substructure

Data (Multi)

645 x 1024

Dimension

drugs (pairs)

222 (63473)

DDI 1301
indication 1702

CPI 611

TTD 207
Substructure | 645 x 582

Experiments

Baselines
* Nearest neighbor [Vilar et al. 2012]
 Label Propagation [Zhang et al. 2015]
» Multiple Kernel Learning [Strazar and Curk 2016]
» Basic Multi-view GraphCNN
Evaluation
« Same strategy as [Zhang et al. 2015]

» Selecting a fixed percentage of drugs randomly and
all DDls associated with these drugs are used for
testing

 For the remaining training data, 90%/10% split for
training/validation

e Evaluation metrics: ROC-AUC, PR-AUC



Multi-View GAE for DDI Prediction (IJCAI 18)

Table 2: Predicting Specific DDI Types (Multiple Outcomes) on Dataset 2.

Using Single View

Methods Test Split (25%) Test Split (50%)
ROC-AUC PR-AUC ROC-AUC PR-AUC
NN 0.627 = 0.043 0.594 4= 0.078 0.594 £ 0.033 0.554 = 0.061
Baselines | LP 0.773 = 0.025 0.670 4 0.052 0.747 = 0.028 0.650 4= 0.053
GraphCNN 0.738 = 0.047 0.594 £ 0.080 0.698 = 0.090 0.583 == 0.102
Proposed SemiGAE 0.798 = 0.029 0.661 = 0.059 0.784 = 0.028 0.649 == 0.059
TransGAE 0.790 = 0.028 0.661 = 0.068 0.770 = 0.031 0.633 == 0.080
Using Multiple Views
Baselines LP 0.774 = 0.025 0.672 = 0.052 0.748 = 0.028 0.653 = 0.055
GraphCNN 0.601 == 0.067 0.526 = 0.120 0.578 = 0.067 0.526 = 0.108
MKL 0.766 == 0.030 0.650 &= 0.061 0.724 = 0.026 0.586 == 0.066
Proposed AttSemiGAE | 0.802 4 0.029 0.678 &= 0.060 | 0.786 4+ 0.030 0.662 + 0.064
AttTransGAE 0.782 £ 0.026 0.670 = 0.058 0.764 = 0.025 0.652 = 0.061

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

Attention Weights
DDI Type |AUC |Chem. |indi. TTDS |CPI
Chest Pain |0.772 |0.151 [0.303 |0.144 |0.402
Insomnia 0.755 [0.380 |0.261 |0.078 |0.291
indication 0.774 |0.117 |0.301 [0.283 |0.299

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



Multi-View GAE for DDI Prediction (IJCAI 18)

Method
» A deep learning framework: Graph Auto-encoders

- Extending GCN to Graph Auto-encoders
« Proposed a new method for similarity integration

- Attention based similarity matrix integration
Application
« A graph neural networks for DDI prediction

- SemiGAE: reconstruct node features and predict node labels

- TransGAE: using test labels as variables and reconstruct all node labels
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang, IJCAI 2018



